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Abstract

Entity-Component System (ECS) architectures have emerged as a powerful alternative to traditional object-oriented solutions
in video games and real-time simulations. However, different ECS implementations present distinct trade-offs between iteration
speed and modification costs. Despite its growing adoption, a comparative analysis on the performance characteristics of ECS
implementation types has yet to be conducted. This study compares the performance of two widely-used ECS implementations:
sparse-set and archetype-based. To facilitate this, an implementation of each architecture was developed in C++20 and their
performance was examined in terms of iteration speed and entity modification costs. The results show sparse-set ECSes enable
cheaper entity modifications but scale poorly during iteration, while archetypes excel at large-scale iteration through cache
efficiency but incur higher composition change costs. These findings provide valuable and actionable guidance for developers

selecting ECS architectures for their specific applications.
CCS Concepts

* Applied computing — Computer games; » General and reference — Performance; * Computing methodologies — Real-

time simulation; Computer graphics;

1. Introduction

Video games have become the largest sector in the global entertain-
ment industry [DITSGR25], with recent figures showcasing that
one-third of people engage with video games daily [BR24]. As
gaming continues to grow in popular culture, consumer demand for
bigger, better, and more technically ambitious game experiences
has intensified. In response, game development studios are con-
tinuously pushing the fringes of what is computationally possible.
One games development technology which has gained considerable
traction in recent years is the Entity-Component System (ECS) en-
gine architecture. Initially introduced in commercial games devel-
opment as early as 1998 [Hér19], ECS has recently found renewed
interest in modern video games. As an example, the front-running
Unity and Unreal game engines now offer native ECS support for
developers [TM24], founding a significant rise in recent interest
for this technology. Interest in ECS architectures is largely spurred
by its efficiency in simulating massive numbers of entities in real-
time. For example, an archetype-based ECS approach enables easy
computational parallelisation (via vectorisation) across entities in a
game world, which has been shown to have significant performance
benefits [WOWH24]. Due to these benefits, many game studios
have integrated ECS into their development process. One notable
example is Minecraft: Bedrock Edition, a video game by Mojang,
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which uses EnTT (a C++ sparse-set ECS library) to drastically im-
prove computational performance [Har19].

Despite the growing interest and adoption of ECS in the
games industry, there remains comparatively little research con-
cerning this architecture in the literature. Whilst some papers
demonstrate the utility of applying ECS for computational effi-
ciency [WOWH24], notable gaps are still evident in the literature,
with one of these gaps concerning the comparative analysis of ECS
implementations. Entity-Component Systems can be implemented
in several ways, with sparse-set and archetype-based being two of
the most common implementation patterns. Comparing these two
implementations in terms of frame latency would, for instance, pro-
vide valuable insights into the benefits and disadvantages of either
implementation; potentially informing developers which is most
appropriate given their specific application. It could also provide
developers with actionable insights and prompt engine design de-
cisions prior to implementation, significantly reducing production
costs.

It is with this motivation in mind that this paper presents a
performance-based analysis between two prevalent ECS imple-
mentation paradigms: sparse-set and archetype-based architectures.
We provide an initial analysis of the two in terms of frame latency
performance and establish practical guidelines to aid developers in
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selecting the optimal ECS paradigm for specific use cases. We also
additionally highlight the urgency for further work in this currently
underexplored area.

2. Related Work

Video games have dramatically shifted from a niche hobby into a
mainstream form of entertainment in recent decades [EW?22]. The
sector has eclipsed traditional forms of media, with revenues sur-
passing the music and video industry combined [PPM*21]. The
rapid growth of the industry has brought about more discerning
consumers, demanding more technologically robust games year-
on-year [CJV*24]. With this increasing demand, and game success
being heavily dependent on innovation [AL14], developers face un-
relenting pressure to provide richer experiences which fully utilise
consumer hardware.

2.1. Architectural Engine Patterns

To meet these demands, game engine architectures have evolved
significantly over the years. Object-oriented Design (OOD) re-
mains the most dominant paradigm for modelling game en-
gines [Grel8], primarily due to its benefits in maintainability and
abstraction [WBW89], and the clear conceptual mapping between
game entities and code objects [Grel8]. OOD also finds applica-
bility throughout several engine subsystems, such as the graph-
ics pipeline or game logic [ACO7]. Game engines have natu-
rally adopted architectural OOD patterns through their evolution.
Amongst these is the prevalent example of the component pat-
tern, popularised by the front-running Unity and Unreal game en-
gines [Gol04]. By opting for composition rather than inheritance,
entity behaviour emerges from a distinct set of reusable compo-
nents instead of tightly-coupled objects [Nys14]. This approach
promotes more comprehensible, maintainable and decoupled archi-
tectures [Raul8, Nys14]. Similar patterns can also be leveraged in
intercomponent communication, via the observer pattern [EE05],
in further decoupling efforts.

Whilst OOD offers advantages in maintainability and code com-
prehension, its performance limitations can present challenges for
game engines, such as the overhead associated with dynamic ob-
ject allocation [Y1i25], poor cache coherence [Farl8] or more un-
stable performance [FAUM20]. These limitations have prompted a
shift of industry interest in Data-oriented Design (DOD) as a vi-
able alternative [Y1i25]. Where OOD nprioritises abstraction and
encapsulation, DOD reorganises systems around data access pat-
terns, transformations and hardware utilisation, for efficient pro-
cessing [Fab18]. Whilst the definition of DOD can vary between
sources, the core tenets of DOD focuses on performance first and
architectural decisions being driven by data [Str19]. The key mo-
tivator in the adoption of DOD principles in games development
is largely spurred by the inherent performance benefits [FAUM20].
Traditional OOD approaches are mostly incompatible with the de-
mands of complex games, where several distinct object types ex-
ist with overlapping functionalities; making deep inheritance trees
brittle, inflexible and cumbersome for developers [Joh25]. Outside
of the context of performance, DOD also has other benefits, such as
enabling non-technical designers greater freedom without requiring
programmer input [Grel8].

2.2. Entity-Component Systems

The Entity-Component System (ECS) paradigm combines the ar-
chitectural benefits of the component pattern with the performance
of Data-oriented Design [Han16,TM?24]. The ECS pattern achieves
this by distinctly separating behaviour from data [Joh25], into three
categories [TM24, Hir19]:

o Entities: Typically a unique numerical identifier use to compose
related components together [Com22]. More abstractly, entities
are the fundamental building blocks of the simulation [Hér19].

o Components: The containers of plain data associated to an en-
tity, with no attached logic or behaviour [TM24, Hér19].

e Systems: The processes that holistically simulate all entities
matching a set of components, with no associated state or
data [Har19].

The decoupling of logic from behaviour in ECS not only fos-
ters architectural modularity [TM?24], but additionally yields struc-
tures which are readily adaptable to computational parallelisa-
tion [Gar21]. Previous work also confirms that parallelised ECS ap-
proaches can significantly outpace serialised counterparts in terms
of performance [WOWH?24]. The key differences between OOD
and ECS are illustrated in Figure 1.

Object-orientation

VehicleManager Vehicle 1 Vehicle 1
Data Data Data
- w -
Data-oriented ECS
Vehicle Driver
Drive B
Logic
(Systems)
Vehicle 1 Vehicle 2 Vehicle 3 Data
(Entities, Components)
Position n Position n Position n

C = Component S = System

Figure 1: A diagram showcasing the conceptual differences in
0OOD vs ECS. In OOD, objects encapsulate both logic and data.
In ECS, components represent data and are clearly separated from
program logic.

Recognising these advantages, industry-leading engines such as
Unity and Unreal have recently offered toolkits for developers in-
terested in leveraging the power of ECS [TM24]. The application of
ECS principles have for existed for several years prior to the coin-
ing of the term ‘ECS’, however. For example, early DOD works
highlight the utility of separating data from logic, along with its in-
herent parallelisation benefits [Sha80, SH84]. In games, one of the
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earliest implementations can be found as far back as 1998, in Thief:
The Dark Project, a stealth-based video game [Leb17,Hér19]. The
paradigm later gained further traction in the industry, notably in
the 2002 title Dungeon Siege, which leveraged ECS for significant
performance gains [Fre16]. Today however, ECS adoption expands
rapidly as developers look to build more performant games, with
recent papers suggesting ECS as the backbone of bespoke mod-
ern engines [Hol19,Hal14]. The traction of ECS has also spread to
mainstream titles, such as the popular Minecraft: Bedrock Edition,
which leverages the popular EnTT C++ ECS library [HO20]. Out-
side of games, ECS also finds utility in a large array of real-time
applications [Com22]; in simulating virtual forestry [WOWH?24],
maritime systems [HCSZ21] or GUI applications [RH19], to name
a few examples.

2.3. Entity-Component System Implementations

ECS is an architectural paradigm and is fundamentally imple-
mentation agnostic; there are several ways in which an ECS can
be made. For example, archetype-based ECSes collate entities
with identical component compositions into contiguously stored
‘archetypes’, which helps with cache coherency and parallelisation
efforts [Cho24]. Three notable examples of archetype-based EC-
Ses are Unity’s DOTS [Tic23], Unreal’s MassEntity Plugin [TM24]
and Mertens’ FLECS [Mer20] packages for ECS. This approach
lends itself well to easy parallelisation via multithreading, mak-
ing it a popular implementation type [TM24]. One downside of
an archetype-based ECS concerns structural changes: when an
entity’s archetype is modified, memory is restructured, incurring
drastic costs [Cai2l]. Batching structural changes at well-defined
points or utilising an archetype graph can help reduce this, how-
ever [Cho24, Mer20].

Another popular ECS implementation type are sparse-set EC-
Ses, popularised by the EnTT library [Cho24]. Sparse-set ECSes
utilise a sparse set data structure [BT93], which is a data struc-
ture of two arrays: the sparse list and the dense list. The dense list
stores component data, and the sparse list maps the entity iden-
tifier to components. The advantages of this approach are con-
stant O(1) search and modification time [Cai21,TM24]. The draw-
backs to this approach however concern direct indexing domain
constraints [Cho24] and inflexibility to query multiple components
in iteration [TM24].

2.4. Comparative Studies

Considering which type of ECS implementation may be most ap-
propriate is an inherently complex problem, as each implementa-
tion has unique advantages and disadvantages. Other types of ECS
implementations, such as graph-based implementations [Cho24] or
bitset ECSes [Cai21] also exist, which further complicates deci-
sion making. Despite the clear growth of the adoption of ECS in
industry, the literature unfortunately remains largely unexplored.
As such, there has yet to be a direct performance-based compar-
ison between the two most prevalent ECS types: sparse sets and
archetypes. Similar comparisons exist, for example, in investigat-
ing serial vs parallelised ECS simulations [WOWH24, Cho24], or
in contrasting object-oriented methods to ECSes [Hir19, TM24,
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AA24], but there is little-to-no work examining ECS implemen-
tations.

To date, the only analysis which indirectly examines ECS types
appears in the work of Hansen & Ohrstrsm [HO20], who con-
trasted several open-source ECS libraries. They identified sev-
eral key insights, notably that entity lookups constitute a major
source of simulation overhead, regardless of the library. Secondly,
object-oriented approaches scale poorly in comparison to ECS ap-
proaches, due to a lack of cache coherence [AA24]. Unfortunately,
much richer insights concerning cross-implementation contrasts,
e.g. between archetypes or sparse-set ECSes, are absent in the lit-
erature. Given the widespread adoption of these two approaches in
modern engines and libraries (e.g. Unity, Unreal, EnTT), the lack
of comparative studies deserves consideration.

3. Methodology

To explore the key differences between archetypes and sparse-sets,
two minimal C++20 ECS prototypical implementations were de-
veloped. The exploration of current open-source solutions would
not allow us to accurately contrast the inherent architectural dif-
ferences of each. Instead, we opted for a comparison of purpose-
built minimal prototypes as it enables a direct comparison of archi-
tectures between the two implementations in a controlled environ-
ment. The C++ source code of the minimal ECS prototypes is also
open-source and freely available on GitHub!.

3.1. Implementation Agnostic Features

Both of the sparse-set and archetype-based ECS types were built
within a single framework, with some features which were indepen-
dent across each implementation. Performing a comparative anal-
ysis is easily achievable through this approach, as boilerplate code
and utilities could be implemented which work across both proto-
types. This not only aids in undertaking the comparison, but addi-
tionally in reducing covariates which may affect performance re-
sults. For example, a separate class for logging performance data
was developed and functioned identically across both sparse-set
and archetype ECS implementations, which is discussed later.

An abstract World class was developed to manage component
sets and entities across both ECSes, as a common interface for con-
taining and managing entities. This abstract layer provides common
functionality relevant to both ECS types regarding entity manage-
ment, and is minimal in its design. It provides the following meth-
ods which each ECS can utilise:

e DeleteEntity (E): To delete an entity E from the world.

e IsEntityRegistered (E): To determine if an entity, given
an identifier E, exists in the underlying ECS.

e AddComponent (T, E): Used in adding components of type
T to an existing entity E at run-time.

e RemoveComponent (T, E): Removes a component type T
from an entity at run-time.

e GetComponent (T, E):Given acomponent type T, attempts
to retrieve the values of a component associated with an entity E.

T https://github.com/StaffsUniGames/cgvc25-ecs-comparison
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A separate Query system was also developed which enabled
the look-up and selection of entities in the world by component
types, a common feature of several ECS implementations. Enti-
ties which match the component-based criteria can be queried via
GetView (),in which variadic templated component types can be
supplied. The query system searches the world for entities match-
ing the set of components, and returns several results. The method
can be used with a WorldViewlterator to iterate entities which
match the criteria given by the set of components passed. The con-
crete implementation details of these two systems differed depend-
ing on the ECS type, and are discussed in more detail in the follow-
ing sections. A diagram illustrating the role of the World and Query
classes is shown in Figure 2 for further clarity.

World
Container for entities

|
Entity 1 Entity 2 : |
1 1

f |

1 ? : Query system

1

1 8 >= 3 H ! Selection of entities
: : in the world

N e e e e e e e - - /7

Figure 2: A diagram showcasing the World and Query systems —
the world contains entities and their associated components, and
the query system enables the selection of entities matching a set of
components.

3.2. Sparse Set Implementation

The implementation of the sparse-set ECS prototype closely drew
on the related work; at its core a sparse-set data structure is used
to store components. The World was implemented utilising this
sparse-set structure. The sparse-set approach can typically be im-
plemented through two std: :vector instances — the dense list
D and sparse list S. The list D contains component data of type T,
whereas S contains integer indices mapping entities to components
in D. For a given entity identifier E, its index into D can be found
as S[E], where S|n] returns the nth element of S. This can be used
as an index into D to retrieve the component data as D[S [E]].

The implementation used in the sparse-set ECS prototype uses
a pagination optimisation, which adds a further depth to the index-
ing procedure. Sparse-mapped indices are paginated by a particular
size of n entities. This approach means that a single contiguous list
of indices S is not used, instead, there are several lists (or ‘pages’).
This approach is useful for large entity counts, where allocating
huge regions of contiguous memory is infeasible. Similar pagina-
tion strategies are found outside of ECS literature, especially where

large-scale management and allocation of memory are concerned —
for example, in virtual memory [Den70].

A list of pages P contains several fixed size arrays of indices (of
length n) into the dense list D. In this approach, there are two in-
dices (p,w) into a page: p as the page number and w as the in-page
index (word). These can be computed, given a contiguous entity
index E and page size N, as p=E/nand w=E mod n. An illus-
tration of this strategy can be seen in Figure 3 for further clarity.

Page list 7 Denselist D
an T \I
: 2 " Component 0
&
Word 0 Word1l Word n
' Component 1
- CEED- - ‘
pmm e —
'
]
"'*L Component2
Word 0 Word 1 Word n
Component z
Word 0 Word 1 Word n P

Figure 3: A visual outline of the pagination optimisation used in
the sparse-set implementation. The page list P stores several fixed
size arrays of length n, which contain indices into D. In this dia-
gram (p,w) = (0, 1) which returns the data for component index 2
in the dense list D.

The query system for sparse-sets utilised a graph-based approach
for creating complex queries. A Node abstract class acts as a wrap-
per for a component set, along with intersection and difference
nodes. A tree of these nodes can be built and supplied to the query
system, which returns a collection of entities matching the query.
The sparse set is searched linearly as it is a flat set of indices; those
matching the graph-based query are included in the return set.

3.3. Archetype-based Implementation

The archetype-based prototype was implemented within the same
framework as its sparse-set counterpart, but is very different in its
design. Instead of utilising two sets of indices, archetype-based EC-
Ses typically organise entities by their componental composition or
archetypes. Archetypes are unique sets of components which define
a particular class of entity, as illustrated in Figure 4.

For example, the composition of an archetype A = {C},C, } con-
tains two components and B = {C|,C,,C3} three. Entities in the
world can be of these archetypal types; their set of distinct com-
ponents forms the basis of their archetype. Note in this case A
and B are compositionally different, but components C; and C,

© 2025 The Author(s).
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are shared, reducing unnecessary repetition of data and enabling
reusable components across several archetypes.

Archetype Archetype
(Truck) (Car)

Physics Component Physics Component

Engine Component Engine Component

Trailer Component

Figure 4: A diagram illustrating the archetypal ECS paradigm,
namely, that archetypes are formed by their set of components. The
two archetypes used here are distinct as they differ in componental
composition.

In our implementation of the archetype-based prototype,
an Archetype class is used which holds a vector of entities
E. The class also holds a set of valid componental types
T and unordered map M which maps types 7T to com-
ponent data C with M[T]. Component data is stored in a
ComponentStore instance which has an integer size and raw
void* data buffer. The Archetype class implements M as
an std::unordered_map<std::type_index, Compo-—
nentStore>, mapping types to a set of components. This enables
Archetype instances to be formed of a unique set of components,
embodying the paradigm.

This archetype implementation shares some similarities with the
sparse-set prototype. The archetype ECS contains an Archetype-
View for usage with viewing the results of an archetype-based
query, along with an Iferator class for iteration. This is similar
to the sparse-set prototype where a similar approach is employed.
These views are not required to match the components precisely
from the archetype from which they are derived; however, all com-
ponents used for said view must be available in the archetype. For
instance, an archetype comprising of components {C,C,,C3} may
have a view referencing only components {Cj,C;}. Another simi-
lar feature between the two implementations is the management of
entities via the World class. However, the World in the archetype
approach also stores and manages the archetypes alongside enti-
ties. This provides a central interface for the access of all ECS data
— should a user request a query for a system A, the view will col-
lect archetype views for each archetype containing component A —
enabling the iteration over all relevant archetypes.

4. Benchmarking

The two ECS implementations were benchmarked using John Con-
way’s Game of Life [C*70] using a uniform grid of different sizes.
This cellular automaton is well-suited for benchmarking ECS ar-
chitecture as it involves frequent component updates, iterative pro-
cessing of large numbers of entities, and predictable computation
patterns. It is often used as a benchmarking problem in various

© 2025 The Author(s).
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computing contexts e.g. the work of Lucas et al. [LDV*19] in
which the authors adopt the cellular automaton in benchmarking
algorithms. Each cell was assigned as a particular entity, with a
CellData component for each. An example screenshot can be seen
in Figure 5

Figure 5: A screenshot of the implemented benchmark using Con-
way’s Game of Life. In this case, n = 62500 (250 x 250).

The first metric benchmarked in the comparison concerns frame
latency, namely, the time taken to process each frame of the sim-
ulation. Benchmarking frame latency provides insights into how
efficiently each ECS approach handles iteration, cache locality, and
component updates. Each of the simulations was run for a total
of 5,000 frames. The second metric concerns latency associated
with entity instantiation: the time required to initialise all enti-
ties involved in the simulation. This measurement helps determine
the overhead involved in managing entities and components within
each ECS architecture.

An entity was assigned to each cell in order to reliably exam-
ine performance across a consistent number of entities. Using Con-
way’s Game of Life, each of the two ECS variations was bench-
marked at increasing entity counts. To achieve this, the uniform
grid size of the simulation was altered such that it satisfied the
number of entities. Four entity counts and grid sizes were used:
100 (10 x 10); 1,000 (50 x 20); 10,000 (100 x 100); and 50,000
(500 x 100). Neighbourhood cell updates on the border of the grid
wrapped around the space by using modulo arithmetic. The simu-
lations were single-threaded and all entities were updated to ensure
a more controlled, level comparison. In addition, no spatial parti-
tioning optimisations were employed. By evaluating these metrics
across both ECS implementations, we aim to reveal the distinct per-
formance characteristics of each architecture. This includes their
relative strengths in iteration efficiency, data locality, and setup
overhead, as well as their scalability across varying entity counts.

5. Results
5.1. Frame Latency

Frame latency was benchmarked between the two ECS implemen-
tations with progressively increasing entity counts, to capture their
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Table 1: Descriptive statistics for frame latency delta Fp between the sparse-set and archetype-based ECSes. For all cumulative metrics,
N = 5000. For the sake of brevity, the archetype-based ECS is abbreviated to ‘Arch’ and the sparse-set ECS as ‘Sparse’ in this table. Frame

latency here is expressed in milliseconds.

Mean Median Std. Dev Range
Entity count | Arch | Sparse | Arch | Sparse | Arch | Sparse | Arch Sparse
100 .828 .822 797 799 571 449 [.260,38.650] [.290,30.140]
1000 .846 .837 799 798 S14 446 [.340,28.620] [.430,28.280]
10000 1.812 | 3.043 1.721 | 2.945 403 401 [1.560,25.490] | [2.630,21.660]
50000 7.510 | 13941 | 7.410 | 13.819 | 1.176 | .804 [7.060,85.160] | [12.610,20.050]

runtime performance under stress. Each benchmarked run captured
latency data for the first 5,000 iterations using std: :chrono
for high-resolution timing. Frame timestamps were recorded at the
start (77) and end (73) of the frame and latency delta calculated as
Fy= (T, —T1). As N = 5,000, a total of 5,000 measures of frame
latency were recorded for each of the ECS types. A full table of
descriptive statistics can be found in Table 1.

For 100 entities, frame latency was marginally higher for the
sparse set implementation (Mdn = .799 ms) against the archetype
ECS (Mdn = .797 ms). This difference did not achieve statistical
significance however, U(N4 = 5000, Ng = 5000) = 12400341.5,
7= —.691, p = .490. In the case of 1,000 entities, frame latency
was almost identical between the sparse set ECS (Mdn = .798 ms)
and archetype implementations (Mdn = .799 ms). With such a neg-
ligible difference, no statistical significance was achieved, U(Ny =
5000, Ng = 5000) = 12372266.5, z = —.885, p = .376.

With 10,000 simulated entities the difference in F, was more
pronounced between the two ECSes, with significantly lower la-
tency in the archetype (Mdn = 1.721 ms) against the sparse-set
(Mdn = 2.945 ms) implementation, U(N4 = 5000, Ny = 5000) =
40203.5, z = —86.320, p < .001. A similar effect was found with
50,000 entities, with latency significantly lower in the archetype
ECS (Mdn = 7.410 ms) against the sparse set implementation
(Mdn = 13.819 ms), UN4 = 5000, Ng = 5000) = 11738.0, z =
—86.517, p < .001. A visualisation of frame latency times as n in-
creases can be found in Figure 6.

Aggregating frame-latency alongside entity count enabled cor-
relation testing between the two variables. Entity count was found
to be positively correlated to frame-latency, achieving significance
in both the archetype-based (rs = .866, p < .001, N = 20000) and
sparse-set (s = .869, p < .001, N = 20000) prototypes.

5.2. Entity Instantiation Latency

A similar analysis was conducted with respect to the latency of in-
stantiating entities initially. The latency /4 recorded for a given en-
tity includes the entity’s construction, association with components,
and emplacement in the grid. Measurement of the setup latency I
were calculated similarly to frame latency; std: : chrono times-
tamps were recorded prior to entity instantiation (77) and immedi-
ately afterwards (75). The instantiation latency was calculated as
Ip = (T» — T1), and expressed in nanoseconds: this was conducted
across 5,000 entities at the start of the simulation. The sparse-set
implementation was found to have significantly lower instantiation

latency (Mdn = 1000.0) compared to the archetype ECS across
constructed entities (Mdn = 6600.0), U(N4 = 5000, Ng = 5000)
=49047.0, z = —88.263, p < .001. The stark difference in latency
between the two can be visualised in Figure 7. Additionally, full
descriptive statistics between the two ECS types can be be found
in Table 2.

Table 2: Descriptive statistics of initial entity set-up times, across
N = 5000 entities, for both ECS implementations. Values of set-up
latency (Ip) are expressed in nanoseconds.

| Archetype I | Sparse-set /5
Mean 6883.280 1093.920
Median | 6600.0 1000.0
Std. Dev | 3373.053 1081.525
Range [6100.0,108000.0] | [900.0,61400.0]

6. Discussion
6.1. Performance and Scalability

At lower entity counts (100 and 1,000 entities), there were no sta-
tistically significant differences in frame latency between the two
implementations. This suggests that for small-scale simulations or
systems where entity count remains low, either architecture may be
equally suitable for runtime iteration efficiency. It also highlights
the lack of utility the ECS paradigm has at small scales, something
that has been seen in previous studies comparing ECS to OOD ap-
proaches [HO20].

For large entity counts however (10,000 entities and upwards),
performance divergence is much more pronounced. This is seen
visually in Figure 6. The archetype-based ECS consistently outper-
formed sparse-set implementations in frame update time at these
higher scales. At 50,000 entities, the archetype ECS achieved
nearly twice the performance of the sparse-set equivalent over
the 5,000 frames. The trend observed here is likely attributed to
the cache-coherent nature of archetypal storage of components.
By storing entities with identical component compositions con-
tiguously, archetypes can reduce cache misses and improve itera-
tion throughput, especially under larger workloads. Sparse-set ECS
variants, in contrast, can store componental data non-contiguously,
requiring more indirect memory access, potentially leading to inef-
ficiencies as entity counts grow.

Additionally, the sparse-set ECS demonstrated increased vari-
ance in update latency at higher scales. Between 10,000 and 50,000

© 2025 The Author(s).
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Figure 6: A comparison of frame latency times between the two ECS implementations, for the first 5,000 iterations. In each of the figures, n
refers to the number of simulated entities. Note the growing separation in frame latency as n increases. Please note that a extreme outliers
have been filled to the nearest mean in these plots; the full data is available as additional material.
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Figure 7: Entity instantiation latency times (Ipn) between the
sparse-set and archetype ECS implementations. Latency is ex-
pressed in nanoseconds in this plot.

entities, the deviation of frame times grew significantly more for
the sparse-set ECS than for the archetype ECS, indicating less con-
sistent run-time behaviour. Again, this is likely a result of less pre-
dictable memory access patterns and less efficient cache usage.

© 2025 The Author(s).
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6.2. Entity Setup and Modification

In contrast to runtime iteration, the sparse-set ECS implemen-
tation consistently demonstrated lower entity instantiation costs.
Across all benchmarks, the sparse-set ECS instantiated entities sig-
nificantly faster than the archetype implementation—by an aver-
age factor of 6.6x. This difference reflects the lower overhead of
sparse-set systems when adding or removing components, as enti-
ties are not grouped by composition and require no restructuring
of memory. This makes the sparse-set ECS most suitable in con-
texts where structural changes are frequent, e.g. adding entities to
the world, or restructuring the componental composition of entities.
Sparse-set ECS types appear to be more suitable to dynamic envi-
ronments where an entity’s behaviour and composition can mutate
frequently. However, where sparse-sets have lower costs associated
with structural changes, they have conversely higher frame latency
costs at large entity scales, and higher variance in update perfor-
mance.

6.3. Summary of Trade-offs

The findings presented here reinforce the view that the optimal
choice of ECS architecture is context dependent, a view shared by
the literature [TM24,Hér19,Cai21]. There is no clear choice of ECS
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implementation: the optimal selection of sparse-sets or archetypes
depends ultimately on the computational scenario. The careful con-
sideration of the simulation and its performance is therefore crucial
for any developer wishing to implement a form of ECS.

Archetypal ECSes exhibit higher performance in scenarios with
high entity counts and little run-time structural changes. They ben-
efit from strong cache coherency and produce generally consistent
iteration speeds across a large amount of entities in the simulated
world. If stability is paramount in the face of large entity counts,
and entity composition is unlikely to change, archetype-based EC-
Ses appear to be a good candidate for performant real-time sim-
ulations. They also suit video games which involve a large num-
ber of simulated elements of a few distinct archetypes. This makes
archetypal ECSes a prime candidate for performance-critical sys-
tems such as physics engines. Sparse-set ECSes, by contrast, have
lower costs associated with structural changes. When entities are
created, destroyed, or modified in some way, the cost of doing so
is drastically reduced in comparison to an archetypal ECS. From
our findings, sparse set ECSes appear to be most suitable in sce-
narios where compositional modification is likely to occur. One
example may be in the simulation of non-pooled particle systems,
which likely have thousands of entities being modified in real-time.
Sparse-sets also have lower overheads associated with faster ini-
tial set-up and instantiation times. This makes them an ideal candi-
date for compositional flexibility. Furthermore, sparse-set architec-
tures are generally simpler to implement and maintain. In scenarios
where ECS performance is not the primary bottleneck, this simplic-
ity may make them a preferable design choice.

The primary trade-off between the two implementations is be-
tween compositional flexibility and scaling frame latency costs.
Archetype-based ECSes perform well at scale, but have high costs
associated with structural changes: they are inflexible but perfor-
mant under stress. In contrast, the performance of sparse-set ECSes
does not scale well with entity count, but they have significantly
lower costs associated with compositional restructuring: they are
flexible and less performant under stress. This trade-off must be
carefully considered for the most suitable candidate to be selected,
depending on the computational scenario the developer wishes to
tackle.

7. Conclusion

This paper set out to compare the efficiencies of two ECS architec-
tures in the creation and iteration of up to 50,000 unique entities.
A custom-built C++ implementation of sparse set and archetype
architectures was developed to leverage a controlled benchmark-
ing process. The results reveal the key trade-offs inherent in each
approach, providing valuable insights for developers seeking to op-
timise ECS usage.

The benchmarking data demonstrated that sparse set based ECS
implementations excel in entity setup times, making them well-
suited for applications where frequent entity modifications are nec-
essary. Their component storage method allows for rapid insertion
and deletion, minimising the overhead typically associated with
entity composition changes. However, as entity counts increased,
the sparse set implementation exhibited growing iteration ineffi-

ciencies. Update latency scaled poorly in contrast to the archetype-
based prototype. This could be attributed to more indirect memory
access and additional query overhead — leading to increased cache
misses and reduced processing efficiency at larger scales.

Conversely, the archetype-based ECS implementation proved su-
perior in iteration performance, particularly in simulations featur-
ing high entity counts. The organisation of component data into
contiguous memory blocks enhanced cache coherence and reduced
iteration overhead. This evidently resulted in more predictable per-
formance under stressful computational workloads. However, the
cost of modifying entity compositions was notably higher in the
archetype-based ECS due to the overhead of structural changes.
This resulted in slower setup and modification times compared to
sparse sets.

Our findings offer practical insights into how different ECS stor-
age models perform under real-world simulation workloads, sup-
porting more informed architectural decisions for game engine de-
velopers and systems designers. We hope to inspire future work
in this rapidly-growing field of Entity-Component Systems, which
currently remains largely unexplored in the literature.

7.1. Future Work

Whilst the results presented in this paper form a strong demonstra-
tion of the differences in performance of archetype and sparse set-
based ECS implementations, it is important to acknowledge that
these findings are dependent on the specific implementations used.
There are several optimisations could be applied to potentially off-
set the drawbacks associated with each ECS variation which were
not considered in benchmarks taken for this paper.

One such optimisation is the use of an archetype graph, which
was covered in the literature review but not utilised in the bench-
marks presented. Implementing this technique could significantly
reduce the cost of entity restructures by precomputing transitions
between archetypes, thereby reducing the computational burden
when components are added or removed from entities. Another
promising optimisation is memory pooling, which can help miti-
gate the pitfalls of dynamic memory allocation commonly associ-
ated with the use of vectors. By pre-allocating fixed-size memory
blocks during initialisation, memory fragmentation is minimised,
ensuring that component data is stored more efficiently. This ap-
proach could potentially lead to significant reductions in entity re-
structure overhead while also improving cache coherence, which
could result in more consistent frame times and enhanced overall
performance.

For future directions of research, an examination of other types
of ECS implementations would be useful to the field. The consid-
eration of parallelisation and the performance benefits it may bring
into real-time ECSes would be another interesting avenue of work.
Furthermore, a more robust comparison of performance data would
provide value to the field: examining memory footprints between
archetype-based and sparse-set ECSes, for example. In addition,
examining if the effects observed in this paper are found with other
benchmarks would be an interesting future direction. Finally, the
comparison between hybrid and non-hybrid ECS variants may pro-
duce interesting findings.

© 2025 The Author(s).
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