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ABSTRACT 

 Metabolic syndrome (MetS) is the clustering of risk factors for type 2 diabetes 

(T2D) and cardiovascular conditions (CVC). MetS features include abdominal 

obesity, hyperglycemia, and dyslipidemia. The lipoprotein lipase (LPL) gene (LPL) 

provides instructions for making the enzyme LPL, hence is crucial for lipid regulation.  

LPL polymorphisms, including single nucleotide polymorphisms (SNPs), which have 

been previously associated with MetS, may be of particular significance to the 

progression of CVC and T2D. This study aimed to investigate the molecular 

pathogenesis of T2D and CVC amongst individuals with polymorphisms of LPL. 

SNPs rs268, rs11542065, rs116403115, rs118204057, rs118204061, rs144466625, 

and rs547644955, in particular, were investigated using data from the UK Biobank. 

Specifically, the confirmed diagnoses of T2D and CVC in the cohort with these SNPs 

were assessed. In addition, this study also aimed to predict the confirmed diagnosis 

of T2D and CVC in the cohort. Variables associated with MetS, T2D and CVC were 

selected from the dataset and were analysed using SPSS. The total number of 

participants analysed in the cohort was 12,872 (mean age 56 years +8.1; 90.0% 

were of British ethnicity; 53.9% were females). Significant (p < 0.05) associations 

between all the SNPs and diagnosis of both T2D and CVC were found. Statistically 

significant differences in weight, BMI, diastolic BP, total lipids in lipoprotein, HbA1c, 

WC, HDL, and LDL were found between SNPs. BMI and WC were significantly 

higher in individuals who were diagnosed with both T2D and CVC; when sexes were 

compared, men with T2D and CVC had slightly increased BMI and WC than women.  

Prediction models using clinical parameters showed good AUC  for predicting the 

diagnosis of T2D and CVC  in ROC analysis (AUC = .959 for T2D, AUC = .772 for 

CVC). The addition of Polygenic Risk Scores (PRSs) showed diagnosis prediction 

improvement for both (AUC = .961 for T2D, AUC = .790 for CVC), and further 



                                         

 
 

addition of SNPs showed more AUC increase (AUC = .965 for T2D, AUC = .837 for 

CVC). This study shows that the investigated LPL SNPs are associated with the 

diagnosis of T2D and CVC. In addition, this study demonstrates that T2D and CVC 

diagnoses may be predicted by clinically available factors, which may be further 

enhanced by incorporating associated PRSs and SNPs, including the reported LPL 

SNPs.  These results can have particular implications for T2D and CVC prevention 

and treatment with the utilisation of stratified and personalised medicine. In this light, 

pharmacogenetic investigations of T2D and CVC  related to these LPL SNPs 

combined with current pharmacogenomics knowledge may pave the way for 

improved preventive and therapeutic clinical guidelines. 
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1. INTRODUCTION 
 

Metabolic syndrome (MetS) is a major global health concern which has seen 

unprecedented rise in the recent decades. It is a non-communicable disease 

associated with the rapidly increasing obesity prevalence. MetS refers to the 

clustering of cardiovascular disease (CVD) and type 2 diabetes (T2D) risk factors 

including insulin resistance (IR), abdominal obesity, dyslipidemia, hypertension, and 

hyperglycemia. In the United States, it is estimated that around one third of the adult 

population has MetS (Saklayen, 2018). Globally, the prevalence is approximately 20-

30% in adults corresponding to over a billion people affected by MetS (Grundy, 

2008, Saklayen, 2018). 

Although extensive investigations on individual components of MetS have 

been widely reported, studies on MetS as an entity are notably scarce in general, 

and genetic studies are limited in particular (Monda et al., 2010). The heritability of 

each component individually has been found to range from 16 to 60% with 

lipids/glucose, obesity at 44% and blood pressure at 20%. In contrast, a study 

conducted  in Italy found the heritability of MetS to be 27% (O'Neill and O'Driscoll, 

2015). Nevertheless, many studies are in agreement that IR is at the core in the 

pathogenesis of MetS. This is related to the role of insulin as a peptide  hormone 

secreted by pancreatic beta cells  in response to increased blood glucose levels to 

maintain normal metabolic state. Through its anabolic functions, insulin stimulates 

transport of glucose in the liver, muscles, and adipocytes (Fahed et al., 2022, Saltiel, 

2021). When IR develops, the metabolic consequences include hyperglycaemia, 

hypertension, and dyslipidemia (Freeman et al., 2024).  

Additionally, when IR develops in  adipose tissues, thos impairment leads to 

increased levels of circulating free fatty acids (FFAs) (Boden and Shulman, 2002, 

Griffin et al., 1999). These FFAs promote lipogenesis and gluconeogenesis upon 
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acting on the liver. Increasing the negative effects, FFAs also have lipotoxic effects 

on pancreatic beta cells and increases triglyceride synthesis which subsequently 

increases the production of very low-density lipoproteins (VLDLs) (Boden and 

Shulman, 2002, Griffin et al., 1999, Murakami et al., 1995, Unger and Zhou, 2001). 

The resulting disruption of lipoprotein homeostasis highlights the potential role of 

lipoproteins in the development of obesity, MetS and related chronic diseases 

(Fahed et al., 2022). 

 There are two main pathways in lipid metabolism: (1) the exogenous 

pathway, which derives lipids from dietary sources; and (2) the endogenous 

pathway, which involves lipids synthesized by the liver (Lent-Schochet and Jialal, 

2024). Several transfer proteins and enzymes are involved in lipid regulation, 

including hepatic lipase, endothelial lipase, lecithin: cholesterol acyltransferase 

(LCAT), and lipoprotein lipase (LPL) (Feingold, 2000). LPL is involved in both the 

endogenous and exogenous pathways. It breaks down triglycerides (TG), and the fat 

molecules are used by the body as energy or stored in fatty tissue, which may 

harden over time potentially leading to CVD (Kumari et al., 2021, Pirahanchi et al., 

2023). Additionally, when T2D is untreated and LPL activity is subnormal, this may 

result in increased serum triglycerides and decreased HDL level, further contributing 

to the development of CVD (Kumari et al., 2021).  

The lipoprotein lipase gene (LPL) provides instructions for making the rate-

limiting enzyme LPL(Pirahanchi et al., 2023). LPL is located on 8p22, spans ∼30 kB 

(kilobase), and contains 10 exons, which are the coding sections of an RNA 

transcript (Xie et al., 2010). Several reports indicate that LPL variations may cause 

IR changes therefore potentially resulting to obesity, MetS, and T2D (Goodarzi et al., 

2004, Huang, 2009, Kumari et al., 2021, Pirahanchi et al., 2023). In The Lancet, 

Hopkins (1997) reported in his article entitled “LPL gene may shape diabetic future” 
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that a polymorphism of the LPL gene has been associated with shorter time between 

diagnosis of non-insulin-dependent diabetes and the development of cardiovascular 

diseases. Other studies which have also reported evidence that variations in the LPL 

gene associates with IR changes, which have repercussions on obesity and MetS 

but these studies were population-specific. For instance, the study by Goodarzi 

published in 2004 (Goodarzi et al., 2004)  focused on Mexican Americans, while  

Huang's study in 2011 was conducted among Chinese Han youths (Huang et al., 

2011).  

Therefore, LPL polymorphisms may be of particular significance in the 

progression of T2D and CVD, especially in the context of MetS. These include single 

nucleotide polymorphisms (SNPs), which are single nucleotide substitutions at a 

specific genomic locus.  SNPs may help elucidate the susceptibility of certain 

individuals to different diseases, including MetS, primarily via disease gene mapping. 

This process involves relational assessments between variants and disease 

phenotypes (Bell, 2002). Furthermore, SNPs in LPL have been reported to 

potentially have diagnostic applications for MetS (Kang et al., 2023). In the, National 

Institutes of Health (NIH) National Library Medicine, an online accessible source of 

information for genetic studies, several SNPs of LPL are shown to have conflicting 

interpretations of pathogenicity (i.e., some reports specify pathogenic for MetS or 

MetS-associated diseases, some are contradictory, and others report no significance 

or association). The SNPs in question include rs268, rs11542065, rs116403115, 

rs118204057, rs118204061, rs144466625, and rs547644955 (seven SNPs).  

These SNPs with conflicting interpretations of pathogenicity may be of 

particular interest for MetS and other healthcare research as additional studies could 

clarify inconsistent findings in different populations. Specifically, further investigations 

have the potential value of enhancing variant classification systems in the long run- 
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for example, via the understanding of sources of disagreements (e.g. reports from 

commercial versus academic laboratories, different methods of interpretations used) 

and identification of limitations (e.g. different classification frameworks/guidelines 

used such as ACMPG/AMP (The American College of Medical Genetics and 

Genomics/Association for Molecular Pathology), and ClinGen (Clinical Genome 

Resource) (Nussbaum et al., 2017, Zukin et al., 2023). This could lead to 

suggestions of improved models for variant classifications and/or better evidence for 

reclassification may be provided, (Lazareva et al., 2024) further taking into 

consideration factors such as out-dated studies, population-specific reports, or 

limited evidence. This may result in improved public genomic resources in terms of 

consistency, accuracy, robustness, and inclusivity amongst others, which may 

subsequently lead to improved diagnostic accuracy and reliability of clinical 

decisions, particularly for patients who undergo genetic testing or being considered 

for personalised/precision medicine.  Furthermore, studies on these SNPs in larger 

populations may reduce conflicting disparities and provide important additional 

information to help elucidate their role in the development of disease (Walsh et al., 

2021). Overall, studies on SNPs with conflicting interpretations of pathogenicity are 

important contributors to improved public healthcare outcomes.  

Using UK Biobank (UKB) data, this study aims to investigate the development 

of T2D and CVD amongst individuals with the MetS-associated LPL SNPs 

specifically rs268, rs11542065, rs116403115, rs118204057, rs118204061, 

rs144466625, and rs547644955. Additionally, the study aims to predict the  

incidence of T2D or CVC, as confirmed by definitive diagnosis amongst individuals in 

the  specified cohort using logistic regression analysis. 

The objectives of this study are as follows: 
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(1) To identify LPL SNPs with conflicting interpretations of pathogenicity in the online 

resource National Institutes of Health (NIH) National Library Medicine 

(2) To detect individuals in the UKB with LPL SNPs rs268, rs11542065, 

rs116403115, rs118204057, rs118204061, rs144466625, and rs547644955 

(3) To select and download variables associated with MetS, T2D, and CVC from the 

dataset that included: sex, age, weight, BMI, waist circumference (WC), hip 

circumference (HC), smoking and alcohol drinking status, physical activity, and diet 

variation, blood pressure (systolic and diastolic), cholesterol levels, HbA1c and 

glucose levels, T2D and CVC were also included, standard polygenic risk scores 

(PRS) for the relevant parameters in this study (PRSs for T2D, cardiovascular 

disease (CVD), body mass index (BMI), glycated haemoglobin, coronary artery 

disease (CAD), atrial fibrillation (AF), high-density lipoprotein (HDL), low-density 

lipoprotein (LDL), and hypertension) 

(4) To analyse the data using SPSS version 29, focusing on the primary outcomes 

as follows:  

4.A) Descriptive characteristics of the cohort 

4.B) Comparison of groups in relation to T2D and CVC diagnosis 

4.B.I) SNPs vs diagnosis of T2D and CVC, using chi-square test for 

independence 

4.B.II)  Zygosity vs diagnosis of T2D and CVC, using chi-square test for 

independence 

4.B.III) SNPs vs clinical parameters, using one-way ANOVA and Post-

hoc Tukey analyses 

4.B.IV) SNPs vs Polygenic Risk Scores,  using one-way ANOVA 

 4.C) Association of variables across different groups 
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4.C.I) Correlation between BMI and waist circumference with T2D and 

CVC diagnosis in individuals with these SNPS 

4.C.II) Correlation between BMI and waist circumference with T2D and 

CVC diagnosis in individuals with the SNPS: Males and Females 

compared 

4.C.III) Partial Correlation between waist circumference and LDL levels 

while controlling for age 

 4.D) Prediction of confirmed T2D diagnosis by logistic regression 

  4.D.1) Prediction of confirmed T2D diagnosis by clinical parameters 

4.D.II) Prediction of confirmed T2D diagnosis by clinical parameters 

and T2D-associated Polygenic Risk Scores (PRS): Model D2 

4.D.III) Prediction of confirmed T2D diagnosis by clinical parameters, 

T2D-associated PRS and SNPs: Full model for T2D 

4.D.IV) Prediction of confirmed T2D diagnosis by SNPs using Model 

D2 

 4.E) Prediction of confirmed CVC diagnosis by logistic regression 

  4.E.1) Prediction of confirmed CVC diagnosis by clinical parameters 

4.E.II) Prediction of confirmed CVC diagnosis by clinical parameters 

and T2D-associated Polygenic Risk Scores (PRS): Model E2 

4.E.III) Prediction of confirmed CVC diagnosis by clinical parameters, 

CVC-associated PRS and SNPs: Full model for CVC 

4.E.IV) Prediction of confirmed CVC diagnosis by SNPs using Model 

E2 
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Publication of the outputs of this research project is aimed for two publications 

in obesity, endocrinology, lipidology, cardiovascular, or other relevant journals. The 

guidelines of UKB regarding publication with the use of their data will be followed.   

 

2. BACKGROUND 
2.A. Contextual Information  
2.A.I. MetS Definition and Criteria 

The definition of MetS was first described by Gerald Reaven in 1988, which 

he first coined as Syndrome X. This was presented during his Banting lecture hosted 

by the American Diabetes Association and the findings were susbsequently 

published in the journal Diabetes (Reaven, 1988).  Later in 2001, he published a 

short history of Syndrome X, wherein an explanation of ‘X’ was mentioned to stem 

from the fact that the importance of IR as a coronary heart disease (CHD) risk was 

relatively unknown at the time (Reaven, 2001).  Subsequent articles  and numerous 

reports have agreed that for the simplest measure, IR appears to be the key driver of 

metabolic disturbances in MetS (Fahed et al., 2022, Lemieux and Després, 2020, 

Roberts et al., 2013).  

The definition of MetS varies from then based on several criteria from various 

health authorities, including World Health Organization, which first formalized MetS 

definition (WHO; 1998), European Group of Insulin Resistance (EGIR; 1999), 

National Cholesterol Education Program Adult Treatment Panel III (NCEP:ATPIII; 

2001), American Association of Clinical Endocrinologists (AACE; 2003), International 

Diabetes Federation (IDF; 2005), and American Heart Association/National Heart, 

Lung, and Blood Institute (AHA/NHLBI; 2004) . A consensus definition was later 

developed, incorporating elements from the AHA/NHLBI and IDF definitions, which 

was established in   2009  (Huang, 2009, Kassi et al., 2011). Although the different 

criteria are all linked and in many aspects similar, evidently, there is a lack of 

universal MetS definition. The criteria for the different definitions of MetS in adults, 
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with comprehensive details and summary is shown in Appendix 1 (A. textual criteria, 

B. tabular comparison). 

 

2.A.II. T2D and CVC: The Big Picture and Pathogenesis  

Diabetes mellitus (DM) affects 1 in 11 adults worldwide and is the ninth major 

cause of death (Zheng et al., 2018). DM is a metabolic disease which involves 

atypically increased blood glucose levels due to poor glycaemic control (Sapra and 

Bhandari, 2024). WHO recognized DM as an epidemic, but has also attained the 

status of a truly global pandemic (Chobot et al., 2018, Unnikrishnan et al., 2017). 

There are several forms of DM such as Type 1, Type 2, maturity onset diabetes of 

the young (MODY), gestational diabetes, and neonatal diabetes; the most common 

of which is T2D accounting for 90% of adults with DM (Sapra and Bhandari, 2024). 

The economic burden associated with medical expenditures is equally alarming, 

ranging between U$140 to U$2990 per person with T2D per year (Ramzan et al., 

2019). In addition, increasing prevalence of T2D is also predicted, with 415 million 

patients in 2015 to an estimated rise to 642 million in 2040 (Aghaei Meybodi et al., 

2017).  

CVD, on the other hand, is the leading cause of deaths and disability-adjusted 

life years (DALY) globally, accounting for one-third of all deaths worldwide (Joseph 

et al., 2017). Ischemic heart disease (IHD) and stroke are the leading contributors to 

the global CVD burden (Roth et al., 2017). In 2004, the report from the article “Effect 

of potentially modifiable risk factors associated with myocardial infarction in 52 

countries (the INTERHEART study): case-control study” published in the Lancet  

stated that dyslipidemia was the most significant risk factor for the first occurrence of 

myocardial infarction (MI), more known as heart attack (Yusuf et al., 2004). However, 

the contributions of the primary risk factors for heart failure vary substantially across 
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different regions (Damasceno et al., 2012, He et al., 2001), which may signify the 

role of genetics and epigenetics in the pathogenesis of CVD. 

Obesity is very strongly correlated with T2D and CVC as it is the most 

important culprit of insulin resistance, along with other closely linked comorbid 

conditions (Iglay et al., 2016). Microvascular and macrovascular complications of 

T2D (eg. diabetic retinopathy, nephropathy, neuropathy; and coronary artery 

disease, peripheral arterial disease, and stroke; respectively), with their 

accompanying financial burden, are also known to cause psychological and physical 

distress (Chatterjee et al., 2017, Gregg, 2017, Khanam et al., 2017). As such, T2D 

and CVC are undoubtedly two of the most investigated diseases in many high and 

middle-income countries across the globe as per report of the International Diabetes 

Federation (IDF) in the 2023 statement “Diabetes and cardiovascular disease.” 

These studies aim to elucidate its pathogenesis, risk factors, and numerous other 

features with the overall goal of T2D and CVC prevention and treatment. 

The dysregulation of glucose metabolism in T2D is primarily due to IR and 

impaired insulin secretion, ultimately manifesting as uncontrolled elevations in blood 

glucose levels (DeFronzo et al., 2015, Lawlor et al., 2017). At the core of its 

development is pancreatic β-cell dysfunction which leads to glucose intolerance 

affecting various tissues (Kaneto, 2015). Several mechanisms have been proposed 

regarding the gradual decline of β-cell function, such as increased non-esterified 

fatty acids, inflammatory cytokines, adipokines, mitochondrial dysfunction for insulin 

resistance, glucotoxicity, lipotoxicity, and amyloid formation (Stumvoll et al., 2005). It 

is now well-established that T2D results from the interaction of the environment with 

the subject’s genetic makeup. Studies which support the multifactorial aetiology and 

nature of the disease include the thrifty phenotype hypothesis, the role of air pollution 
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and noise, and the effects of endocrine-disrupting chemicals also termed as 

obesogens or diabetogens (Kahn, 2003).  

T2D, as a polygenic disorder, develops due to multiplex interplay between 

numerous genes and environmental factors.  The precise mechanisms of how these 

genes interact with each other and with the environment is not completely 

understood. The genetic component of T2D risk appears to be the outcome of 

interaction of many genes across the genome, and is therefore not concentrated in 

one region (Ali, 2013). It is possible that the genetic component of T2D is because of 

multiple rare genetic variants, or a few rare genetic variants of large effect (Gibson, 

2012, Queitsch et al., 2012). As with other diseases, diabetes risk genes 

identification is paramount to understanding the genetic components of T2D – this 

includes linkage studies, candidate gene studies, and genome-wide association 

studies (GWAS); the technology and processes involved in these are further 

discussed in succeeding sections. Many of the diabetes risk genes identified from 

these studies are active in beta cells (e.g. risk alleles at 

MTNR1B,SLC30A8, THADA, TCF7L2, KCNQ1, CAMK1D, CDKAL1, IGF2BP2, HNF

1B and CENTD2 loci were associated with reduced beta-cell function) or involved in 

insulin secretion (e.g.  risk alleles at  PPARG, FTO, and KLF14 loci were associated 

with reduced insulin sensitivity) (Voight et al., 2010). Hence, this supports the idea 

that beta-cell dysfunction and IR are crucial final steps in the development of T2D 

(Florez, 2008). Other more recent studies show that polymorphisms in the PON1, 

LCAT, APOE, FTO, and TCF7L2 are significantly  associated with T2D by an 

increase in free fatty acid (FFA) (Himanshu et al., 2020). Although, as mentioned, 

due to being a multifactorial chronic disease, the gene-environment interactions in 

addition to an individual’s genetic component is extremely complex, and it is for this 

particular reason that T2D heritability and pathogenesis can not be completely 
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explained even at this time. Nevertheless, studies on diabetes risk genes and their 

contribution to the development of obesity and MetS are significant to the continuous 

unearthing of the underlying molecular pathogenesis of these diseases. 

On the other hand, at the core of CVD pathogenesis is atherosclerosis, 

(Frostegård, 2013, Walden and Tomlinson, 2011), the hardening or thickening of the 

arteries due to plaque build up from deposits of fatty substances in the artery lining. 

This results in coronary artery disease (CAD), cerebrovascular disease, and 

peripheral vascular disease which subsequently leads to heart failure or cardiac 

arrhythmias (Walden and Tomlinson, 2011). Elevated low-density lipoprotein (LDL) 

cholesterol and triglyceride levels are established as major predictor of CAD 

(Talayero and Sacks, 2011). The contribution and role of lipids and lipoprotein 

particles have been identified in the pathology of CVD, with numerous studies 

supporting the need for more in-depth investigations (Soppert et al., 2020). The 

major risk factors for CVD have also been identified, including T2D or even slight 

glucose abnormalities (Chahwala and Arora, 2009).  

As with T2D, linkage studies, candidate gene studies, and GWAS are used to 

discover genes for CVD. Family and twin studies have demonstrated the heritability 

of CVD, with genetic variants which predispose to CVD spanning from rare 

mutations to common polymorphisms (Abbate et al., 2008). Association studies have 

identified polymorphisms with APOE, APOA5, and MC4R as determinants of plasma 

cholesterol levels, plasma triglycerides, and body weight, respectively, among others 

(Vrablik et al., 2021). Another CVD-asscociated gene detected by GWAS which has 

been deemed as one of the most interesting genes, is FTO, having been confirmed 

previously as associated with BMI and T2D. In addition, FTO has also been 

associated with other diseases such as Alzheimer’s, diabetes complications, and 

even as a determinant of total mortality (Vrablik et al., 2021). Considering plasma 
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triglycerides which has been discussed as an established predictor for CVD, a study 

by Johansen et al. in 2010 showed that the genetic architecture for triglycerides in 

the population studied comprised of large-effect variants rare in frequency, small 

effect variants common in frequency, and environmental factors (Johansen et al., 

2010, Kathiresan and Srivastava, 2012). This was the conclusion they derived when 

both common and rare genetic variants explained 42% of total variation in the 

diagnosis of hypertriglyceridemia: clinical variables explained 20%, common genetic 

variants explained 21%, and rare genetic variants explained 1% (Johansen et al., 

2010) . This result which appears as a mosaic, hence termed the mosaic model 

(Kathiresan and Srivastava, 2012), clearly show here once more the complexity and 

interplay of numerous influences contributing to CVD pathogenesis similar to T2D.  

Various lifestyle characteristics were described to confer T2D and CVC risks, 

most known of which are increased caloric intake low in fibre, and little physical 

activity (Kolb and Martin, 2017). Greater risks were also reported with increased 

levels of noise and air pollution due to the activation of the hypothalamic-pituitary-

adrenal (HPA) axis and the autonomic nervous and immune systems which are 

linked to depression (Dendup et al., 2018). Although a recognized polygenic disease, 

the incorporation of human genetics along with lifestyle and environmental factors 

have been gaining popularity in the recent decade, particularly in light of 

personalised medicine for T2D management (Gloyn and Drucker, 2018). The 

addition of this genotype approach to the currently practiced phenotype method (i.e. 

highly dependent on patient’s clinical characteristics such as demography, 

comorbidities, and biological characteristics) of T2D management, is the backbone 

of personalised medicine (PM) for T2D diagnosis and subsequent treatment 

(Scheen, 2016). This is posited to complement current T2D therapeutic measures 

(e.g. use of anti-diabetes medications and metabolic surgery) for better, more 
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efficient, and cheaper T2D management in general and in the longer-term. All these 

aspects may also be applicable to the diagnosis, prevention and treatment for 

various CVC.  

 

2.A.III. The Role of LPL and LPL 

 Lipoproteins are lipid particles containing different components with a central 

core made of triglycerides and cholesterol esters that transport plasma lipids (Genest 

et al., 1992, Lent-Schochet and Jialal, 2024). Hence, because lipids are not soluble 

in water, lipoproteins are needed in the circulation. There are seven classes of 

lipoproteins: (1) chylomicrons, (2) chylomicron remnants, (3) very low-density 

lipoproteins (VLDL), (4) intermediate density lipoproteins (IDL), (5) low-density 

lipoproteins (LDL), (6) high-density lipoproteins (HDL), and (7) lipoprotein (a) (Lp-a) 

(Feingold, 2000).  There are two lipoprotein pathways: (1) endogenous, and (2) 

exogenous. The schematic on the roles of components including enzymes for both 

pathways are shown in Appendix 2, and the processes are summarized below, as 

very concisely but clearly presented by Feingold in January 2024 (Feingold, 2000):  

For the exogenous lipoprotein pathway, the start is the incorporation of dietary 

lipids into chylomicrons in the intestine. Then in the circulation, the triglycerides 

carried in chylomicrons are metabolized in muscle and adipose tissue by lipoprotein 

lipase releasing free fatty acids, which are subsequently metabolized by muscle and 

adipose tissue, and chylomicron remnants are formed. Chylomicron remnants are 

then taken up by the liver. 

For the endogenous lipoprotein pathway, it begins in the liver with the 

formation of VLDL. The triglycerides carried in VLDL are metabolized in muscle and 

adipose tissue by lipoprotein lipase releasing free fatty acids and IDL are formed. 

The IDL are further metabolized to LDL, which are taken up by the LDL receptor in 
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numerous tissues including the liver, the predominant site of uptake. Reverse 

cholesterol transport begins with the formation of nascent HDL by the liver and 

intestine. These small HDL particles can then acquire cholesterol and phospholipids 

that are effluxed from cells, a process mediated by ABCA1 resulting in the formation 

of mature HDL. Mature HDL can acquire addition cholesterol from cells via ABCG1, 

SR-B1, or passive diffusion. The HDL then transports the cholesterol to the liver 

either directly by interacting with hepatic SR-B1 or indirectly by transferring the 

cholesterol to VLDL or LDL, a process facilitated by CETP. Cholesterol efflux from 

macrophages to HDL plays an important role in protecting from the development of 

atherosclerosis.  

Lipoprotein lipase is one of the four enzymes (other three are hepatic lipase, 

endothelial lipase, and lecithin: cholesterol acyltransferace (LCAT)) involved in 

lipoprotein metabolism (Feingold, 2000, Olivecrona, 2016). Its systematic name is 

triacylglycerol acylhydrolase, and it is mainly distributed in adipose, heart, and 

skeletal muscle tissue (Appendix 2) (Wang et al., 1992). The active site of the LPL is 

a Ser/Asp/His triad which is in a hydrophobic groove blocked from solvent by the lid 

(Mead et al., 2002). On a single lipoprotein, estimate is that up to forty LPL dimers 

may act at the same time, and the release of the product in the circulation is believed 

to be a rate-limiting step (Mead et al., 2002, Wang et al., 1992).  

Some lipoproteins are risk factors for CVD and other metabolic disorders, and 

an impairment in lipid metabolism may cause drastic outcomes in a person’s health 

(Lent-Schochet and Jialal, 2024). In a mice study, it has been reported that LPL 

caused insulin resistance and promoted obesity (Delezie et al., 2012). In humans, a 

study reported that a high adipose tissue LPL response to a high-carbohydrate diet 

may predispose toward fat gain (Ferland et al., 2012). Clearance of triacylglycerol-

rich lipoproteins, a crucial step to release fatty acids for usage or storage, is believed 
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to be slowed down in metabolic disease and has been observed both in mice and 

humans (Olivecrona, 2016). In relation to glycaemic control and diabetes, LPL 

activity in adipose tissue and skeletal muscle is insulin-dependent, therefore LPL 

activity varies depending on insulin level and insulin sensitivity  (Taskinen, 1987). 

LPL regulation also has important role in atherosclerosis, and is known to more 

directly impact CVD, because impaired LPL activity leads to accumulation of 

chylomicrons and VLDL in plasma, which results in hypertriglyceridemia (Kumari et 

al., 2021).  

The gene that encodes LPL is the LPL gene (LPL), which is located 8p22, 

spans ∼30 kB, and contains 10 exons as specified (Xie et al., 2010). It was in 1960 

when LPL deficiency was discovered by Havel and Gordon (Havel and Gordon, 

1960), and from then, several mutations have been detected in LPL (Henderson et 

al., 1991).  Nevertheless, anomalies or changes in LPL, including SNPs as 

discussed, may directly or indirectly impact LPL and its activity with subsequent 

repercussions on lipid metabolism. A schematic on the relationship among LPL and 

dyslipidemia, T2D, and CHD is presented in Appendix 3.      

 

2.A.IV. The LPL SNPs in this study 

 The summary of information for the seven LPL SNPs in this study (rs268, 

rs11542065, rs116403115, rs118204057, rs118204061, rs144466625, and 

rs547644955) identified, with information copied, from the NIH Library of Medicine 

online for reference is presented in Appendix 4.  

The details include variant type (i.e. single nucleotide variant (SNV), the 

specie (homo sapiens), alleles (e.g. A>G specify that the reference allele is A (i.e. 

adenine) and the variant allele is G (i.e. guanine), chromosome, functional 

consequence (e.g. missense variant), and clinical significance (i.e. conflicting 
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interpretations of pathogenicity). Further discussion on the LPL SNPs investigated 

in this study are presented in the next section.  

 

2.A.V.  Advanced Molecular Techniques: SNPs and Clinical Research  

 Some background has already been discussed regarding SNPs. This section  

will expound further and provide additional details, discuss SNP types, SNP 

frequency, current SNP detection methods, applications and importance including 

that for clinical research, and databases. 

 Going back to what SNPs are, a note worth mentioning and discussing here is 

the difference between SNPs and mutations. Variants in the sequence of human 

DNA and proteins are identified as either a mutation or polymorphism. If the 

frequency of the variation in the DNA sequence in a population is 1% or higher, it is 

called a polymorphism (i.e. SNP, if variation is in a single nucleotide, the most 

common polymorphism); otherwise, it is termed a mutation (Karki et al., 2015). The 

latter may be more known globally to the public given adverts on mutants particularly 

in scientific fiction stories in printed materials (e.g. comic books), the television and 

movies. However, in healthcare research, both mutations and SNPs are widely 

investigated. Polymorphisms being more common in the population suggest that it is 

naturally occurring, and their effects are investigated in predisposition studies to 

certain diseases such as what has been explored in this research.  

 Going back further to the basics of molecular biology, almost every cell in the 

human body is nucleated, thereby containing deoxyribonucleic acid or DNA, the 

genetic information-carrier molecule. The DNA is composed of two chains that coil 

as a double helix, which are hydrogen-bonded via base-pairing rules (i.e. adenine 

(A) with thymine (T), and cytosine (C) with guanine (G)). Alleles, or also called 

allelomorphs, are variants of a nucleotide sequence at a locus in a DNA molecule. 
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SNVs, or also called SNPs when found in at least 1% of the population as described, 

differ at a single position – for instance, the seven SNPs investigated in this study. 

These variations have functional consequences, pertaining to the effect of the 

variation. The functional consequence of a missense variant alteration pertains to 

production of an amino acid that is different from the usual amino acid produced in 

the same position. The intron variant is a non-coding section. SNPs in the LPL gene 

may impact LPL enzyme activity with varying degree of effect from 

none/negligible/minimal to drastic changes in the reduction or increase of enzyme 

activity, subsequently affecting individuals’ phenotypes (Perera et al., 2025). The 

functional and biochemical consequences of the LPL SNPs investigated in this study 

are presented in the following paragraphs (succeeding seven paragraphs discussing 

each SNP). The SNPs in investigation and their functional consequences as well as 

their clinical significance are shown as a summary for each SNP in Appendix 4; 

further information on the biochemical consequences of the SNPs can also be found 

in the Universal Protein Resource (UniProt), an online resource, with the accession 

number P06858 for LPL. 

The rs268 allele is A>G (meaning adenine is replaced with guanine), with the 

functional consequence of a missense variant. The LPL SNP rs268 (UniProt 

VAR_004239), also known as p.Asn291Ser or Asn291Ser, as well as LPL N291S or 

N318S, is a loss-of-function variant that reduces LPL enzyme activity. This leads to a 

significant increase in plasma triglyceride levels due to the slower clearance of 

triglyceride-rich lipoproteins, and also disrupts the normal metabolism of HDL, 

causing a decrease in plasma HDL cholesterol levels. These changes relate to 

evidence, which demonstrates that the rs268 SNP is a key genetic determinant of an 

unfavorable lipid profile (Reymer et al., 1995a). The rs268 has been identified in 

UniProt to be involved in hyperlipoproteinemia (HLPP1) and as a risk factor for 
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familial combined hyperlipidemia-3 (FCHL3) (de Bruin et al., 1996, Morabia et al., 

2003).  

The rs11542065 alleles are C>G,T (comma (,) specifying either of the two 

bases), with the functional consequence of a missense variant. However, 

rs11542065 is a relatively unstudied variant compared to other LPL polymorphisms 

like rs268, which may be attributed to the wide discrepancy in frequency of these 

SNPs in various populations (i.e. rs268 being the most common among the 

investigated SNPs). Although research on LPL SNPs as rs11542065 is ongoing, 

they are often integrated into broader polygenic risk score models to assess overall 

risk for metabolic and cardiovascular conditions (Dron et al., 2019). 

The rs116403115 alleles are T>C,G (comma (,) specifying either of the two 

bases), with the functional consequence of a missense variant. The rs118204061 

allele is T>C, with the functional consequence of a missense variant. The 

rs144466625 allele is G>A, with the functional consequence of a missense variant. 

As with rs11542065, the rs116403115, rs118204061, and rs144466625 have limited 

reports and therefore would benefit from further investigations such as this research 

for additional information on their effects and clinical significance across varied 

populations.  

The rs118204057 (UniProt VAR_004225) alleles are G>A,C (comma (,) 

specifying either of the two bases), with the functional consequence of a missense 

variant. This variant is described to result in loss of enzyme activity and its 

involvement in disease has been described to be in HLPP1; there are 14 

publications referenced in UniProt to date, including publications from the UK and 

Europe (Kavazarakis et al., 2004, Mailly et al., 1997), and mixed ancestry 

populations (Monsalve et al., 1990). 
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The variant type for rs547644955 is DELINS (or Deletion and Insertion) with 

alleles T>-,TT (‘-‘ specifying deletion). The functional consequence of the SNP 

rs547644955 is specified as an intron variant. There are very limited reports and no 

publications (National Library of Medicine) on this SNP, and an additional factor 

contributing to the need for subsequent significant study is it being an intron variant. 

Introns, being non-coding sections of the DNA or RNA, present unique challenges in 

determining pathogenicity primarily due to their location and regulatory complexity (Li 

et al., 2017). Unpredictable effects on splicing (eg. pre-mRNA splicing by modifying 

splice donor/acceptor sites that are also difficult to predict computationally) (Anna 

and Monika, 2018) and lack of functional assays (eg. lacking or non-standardized) 

may also be considered as contributory factors (Cooper, 2010). In addition, many 

intronic variants are under-represented in clinical databases or available population 

frequency may be insufficient, therefore many such variants remain classified with 

uncertain significance (Landrum et al., 2018). As discussed, the collective clinical 

significance is conflicting interpretations of pathogenicity for all these SNPs. In the 

online resource (this appears similar to how it appears in Appendix 4), clicking on the 

specific SNP would lead to further information. The clinical significance is presented 

in the “Clinical Significance” tab, which shows the ClinVar Accession, Disease 

Names, and Clinical Significance. When the Clinical Significance varies or is 

conflicting in nature  (e.g. for rs268: pathogenic, risk factor, uncertain significance, 

conflicting interpretations of pathogenicity, and benign are listed), its clinical 

significance is listed as “conflicting interpretations of pathogenicity” as a whole. This 

is also related to the results of the publications (listed in the “Publications” tab) on the 

specific SNPs. 

 For rs268, for example, the first publication listed in the National Library of 

Medicine was in 1995, which concluded that a defective LPL is at least one of the 
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contributing factors to the familial combined hyperlipidemia phenotype (Reymer et 

al., 1995b). There are around 30 publications on this SNP to date on this list up to 

2022. One of the largest earlier studies in 2008, the HuGE association and meta-

analysis, which had a total of over 70,000 CHD cases and controls, reported that 

there was only a modestly adverse lipid profiles for carriers of rs268; but was also in 

agreement on the need for further investigation of this genotype on CHD risk (Sagoo 

et al., 2008). In 2010, a study by Ariza et al in Spain, investigated the additive effect 

of LPL variant with other genetic variants which have effects in triglyceride (TG) 

metabolism such as APOA5 and APOE, and found that rs268 has a significant 

independent additive effect on TG levels (Ariza et al., 2010).  

 In Section 2.A.III, the endogenous (synthesis within the body, i.e, the liver) 

and exogenous (from food or dietary sources) lipoprotein pathways have been 

discussed. Figure A shows a flow chart when there is an irregularity with LPL 

function; this may be attributed to an aberration of LPL gene (eg. SNP or mutation), 

causing dysregulation of lipid metabolism and homeostasis which may lead to  

dyslipidemia, affecting cascades of imbalance in bodily mechanisms as fatty acids 

play a major role in heart, muscle, and adipose tissue metabolism.  

 The association of LPL and dyslipidemia have long been established and has 

been found to be regardless of ethnicity (Havel and Gordon, 1960, Henderson et al., 

1991, Liu et al., 2004). As an enzyme, when LPL hydrolyses triglycerides, non-

festered fatty acids (NEFA) and 2-monoacylglycerols are provided for many tissues- 

in the adipose tissue, NEFA is stored as triacylglycerol (TAG) via re-esterification; 

while in the muscles, NEFA is the major energy source, suggesting that LPL gene is 

the candidate gene for dyslipidemia (Mead and Ramji, 2002, Merkel et al., 2002, 

Seip and Semenkovich, 1998). Further, some studies show that LPL deficiency leads 

to hypertriglyceridemia (Feoli-Fonseca et al., 1998, Liu et al., 2004), and several 
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other studies in different populations support that LPL variants associate with varying 

lipid levels such as the study in French subjects - Jemaa et al. (Jemaa et al., 1995), 

in Dutch population - Groenemeijer et al. (Groenemeijer et al., 1997), and in 

Japanese individuals - King et al. (King et al., 1998)  and Yamada et al. (Yamada et 

al., 2007), and amongst Chinese - Yang et al. (Yang et al., 2005). In addition target 

therapy studies in mice by Ross et al. (Ross et al., 2004) and anti-LPL autoantibody 

investigations by Kodera et al. (Kodera et al., 2005) support the role of LPL gene 

aberrations in the pathogenesis of dyslipidemia. 

 Dyslipidemia may then lead to insulin resistance and/or pancreatic Beta cell 

apoptosis, which may result to T2D.  Hypertriglyceridemia, being characteristic of 

dyslipidemia, prioritizes TAG utilization inhibiting the intake and oxidation of glucose 

(Ferreira et al., 2001). Moreover, fatty acid metabolites in the cell interfere with the 

cascade of insulin signalling (Pulawa and Eckel, 2002), and Beta-cell function may 

be impaired which can lead to apoptosis when more free fatty acids are delivered to 

pancreatic Beta cells (Cruz et al., 2001). All these are suggested contributing factors 

to the direct association of LPL aberration to the development of T2D, which may be 

considered for all the SNPs included in the study, given that all have shown 

association to the development of T2D. Other studies also report that some LPL 

SNPs have further effects in diabetes complications, such as the study of Wu et al., 

which suggested that investigated LPL SNPs conferred susceptibility to diabetic 

kidney disease and rapid loss of renal function (Wu et al., 2023). It is important to 

note here and again, however, that the outcome is dependent on the LPL 

impairment, considering type or degree. For instance, a meta-analysis study by Liu 

et al. in 2020 has showed that certain alleles in the LPL gene were associated with 

lower risk of T2D, although this was still attributed to change in lipid levels (Liu et al., 

2021).  
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 Essential hypertension (EH), as with the other related chronic diseases 

mentioned in this study, has genetic, environmental, and epigenetic causes. And as 

with T2D, abnormalities in lipid metabolism and insulin resistance are suggested as 

major causes in EH development, particularly hemodynamics due to increased TG 

levels, sodium reabsorption, retention, and vascular hypertrophy (Jemaa et al., 

1995); as well as the role of LPL in arterial stiffness regulation (Yang et al., 2004). 

This is supported by research including linkage analysis and disequilibrium studies in 

Chinese populations showing LPL gene markers being associated with systolic blood 

pressure (SBP) and diastolic blood pressure (DBP) (Tu et al., 2005, Yang et al., 

2004, Yang et al., 2003). Although earlier studies did not see similar results in 

Caucasians (Hunt et al., 1999), a more recent meta-analysis generalized  

association between the LPL gene S447X and hypertension; however, the 

association was found to be stronger in Asians (Wang et al., 2017), supporting that 

LPL may need race-specific investigations in terms of the development of 

hypertension.  

 There are several risk factors already discussed in this chapter that have 

established association with the pathogenesis of coronary heart disease (CHD) and 

other cardiovascular diseases, such as insulin resistance, hypertension, and even 

T2D. Atherosclerosis, as also previously discussed, as well as thromboembolism, is 

a known effect of dyslipidaemia. Thromboembolism arises when a localized blood 

clot (thrombus) breaks off from a site, travels through the bloodstream and obstructs 

blood vessels eventually causing ischemia (lack of oxygen) and organ damage 

(Gollamudi et al., 2022). Atherosclerosis and thromboembolism can both cause CHD 

/ CVD. But in the grounds of LPL aberration alone, several studies have reported 

direct linkage between LPL SNPs and aetiology of CVD (Bos et al., 2004, Lamarche 

et al., 1997, Rip et al., 2006, Zee et al., 2006). As to the underlying complex 
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mechanism, some causes and cascades include lipid-saturated macrophages 

penetrating the endothelium cells in the vascular wall middle layer given an 

overexpression of LPL (Babaev et al., 2000), and proliferation of smooth muscle 

cells due to LPL-triggered pro-pathogenic events (Mamputu et al., 2000). In a mice 

study by Wilson, et al. (Wilson et al., 2001), LPL deficiency in the macrophage 

showed a decrease in diet-induced atherosclerosis, while this was accelerated in 

apoE-deficient mice via expression of human LPL in the macrophage specifically, 

suggesting tissue-specific effects of LPL variations.  

Some definitions of SNPs require that the subsitution of a single nucleotide at 

a specific position in the genome should be present in a large population (e.g. at 

least 1%) (Sherry et al., 1999); howevever, many publications do not apply this cut-

off (Auton et al., 2015, Lander et al., 2001, Sherry et al., 1999). SNPs may be within 

coding, non-coding, or intergenic (i.e. between genes) regions. SNPs in coding 

regions may be synonymous substitutions (i.e. do not result in amino acid change), 

or non-synonymous substitutions; the latter may be missense (single change in the 

base results to amino acid change, resulting in disease), or nonsense (results in 

premature stop codon) (Auton et al., 2015, Cordovado et al., 2012). In the global 

population, according to MedlinePlus, over 600 million SNPs have been identified. 
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Figure A. The effects of aberration of LPL gene resulting in T2D and CVC (Feingold, 

2000, Xie et al., 2010): Diagram showing the effects of aberration of LPL gene in the 
lipoprotein pathways (endogenous and exogenous) resulting in dyslipidemia and 
subsequently T2D and CHD, the most common CVD which may be taken as a 
surrogate marker for all CVD/CVC.  LDL-(R) = low-density lipoprotein (receptor), 
Chol = cholesterol, VLDL = very low-density lipoprotein, IDL = intermediate density 
lipoproteins, TG = triglycerides, CE = cholesterol esters, FA = fatty acids, T2D = type 
2 diabetes, CHD = coronary heart disease, CVD = cardiovascular disease, CVC = 
cardiovascular conditions.   
 

 There are several SNP analysis or detection techniques available, including 

DNA sequencing, mass spectrometry, capillary electrophoresis, denaturing HPLC 

and gel electrophoresis, hybridization analysis, and polymerase chain reaction 

(known as PCR) followed by gel electrophoresis (Ye et al., 2001). DNA amplication 

via PCR, in fact, is often used for many of these techniques (Tu et al., 2018); 

however, this is often costly and time-consuming. Because of this, alternative 
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techniques are being explored such as the method developed by Xia, et al in 2021 

which involved the use of biosensor and fluorescence (Xia et al., 2021). 

 In terms of applications, the utility of SNPs for GWAS and candidate gene 

association studies have been briefly discussed among others. GWAS require 

genome-wide genetic data maybe generated by several technology, such as whole 

genome sequencing (WGS) which  provides the most comprehensive genetic data in 

an organism at a single time, and whole exome sequencing (WES) which sequences 

the protein-coding regions of genes in a genome (Schwarze et al., 2018). A new 

technology also increasing in popularity is next-generation sequencing (NGS) which 

allows for massive parallel sequencing of DNA or RNA sequences or whole genome 

in a short period of time; NGS involves several steps as DNA/RNA fragmentation, 

library preparation, sequencing, bioinformatics analysis and data interpretation (Qin, 

2019). Another important application of SNPs is in pharmacogenetics, which is 

discussed in detail in the next sections, particularly for T2D and CVC medications.   

 Bioinformatics databases, which are mostly online and easily accessible, 

provide valuable resources for studying  SNPs.   Notable example include dbSNP 

(used for this study in identifying the SNPs with conflicting interpretations of 

pathogenicity for LPL),  as well as the OMIM database, Kaviar, dbSAP, SNPedia, 

International HapMap Project, and GWAS Central.  

 

2.A.VI. T2D and CVC: Current Treatment Strategies   

 The first line of prevention for T2D and CVC are lifestyle modifications. 

Because it is generally believed that energy-dense diet combined with sedentary 

lifestyle are the primary cause of T2D, it follows that modifying these factors may 

reverse T2D (Kolb and Martin, 2017). One of the current hard evidence supporting 

the intensive weight management approach through caloric restriction for diabetes 
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remission is the Diabetes Remission Clinical Trial (DiRECT). The intervention 

comprised withdrawal of antidiabetic and antihypertensive drugs, total diet 

replacement (825–853 kcal/day formula diet for 3–5 months), followed by stepped 

food reintroduction (2–8 weeks), and structured support for long-term weight loss 

maintenance. Results showed that almost half of the participants achieved remission 

to a non-diabetic state and off antidiabetic drugs at 12 months (Lean et al., 2018). 

Structured exercise intervention programs have also been shown to be effective for 

IR. Controlled trials using continuous glucose measurements suggest that exercise 

has beneficial effects on insulin sensitivity and glycaemic control (Kolb and Martin, 

2017, Sampath Kumar et al., 2019). 

Conventionally, when lifestyle modification measures are deemed 

unsuccessful, pharmacotherapy is used.  Pharmacotherapy, also known as 

pharmacological therapy or drug treatment, is universally known as the use of one or 

more pharmaceutical drugs to improve symptoms, treat conditions or prevent 

diseases. MetS treatment and therapies, on the other hand, are primarily targeted on 

only one metabolic trait (for example hyperglycaemia, hyperlipedimia, or 

hypertension). As such, MetS medication categories include antidiabetics 

(metformin, thiazolidinediones, SGLT2 inhibitors, glucagon-like peptide-1 agonist), 

lipid-lowering agents (statins and non-statins), ACE inhibitors, ARBs, and antiplatelet 

agents (Nguyen et al., 2017). These therapeutic options have their distinct benefits 

and disadvantages, mechanisms of action, and predicted outcomes. Suitability of the 

patients are evaluated by physicians, particularly endocrinologists, diabetologists, or 

cardiologists depending on the patient’s clinical characteristics, comorbidities, 

contraindications, and several other related factors (Aghaei Meybodi et al., 2017, Elk 

and Iwuchukwu, 2017, Gloyn and Drucker, 2018, Srinivasan et al., 2018). There are 

also combinations of these drugs, primarily antihypertensives and lipid modifying 
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drugs, known as the polypill which is gaining increasing recognition and use 

(Rosolová, 2017). The combination of drugs in the form of the polypill may be a 

suitable solution for preventing both T2D and CVD particularly for patients with MetS 

(Rosolová, 2017). 

When lifestyle modification and/or pharmacotherapy fail, bariatric surgery (BS) 

is often the next treatment option offered to patients. BS is recognized to be the most 

effective treatment for obesity, with effects that go beyond weight loss as a high 

percentage of cases achieve remission of comorbidities, hence also known as 

metabolic surgery (Benaiges et al., 2015, Buchwald and Buchwald, 2019). 

Contemporary bariatric operations which are now deemed safe include Roux-en-Y 

gastric bypass, sleeve gastrectomy, adjustable gastric band and the duodenal 

switch; the vast majority of which are currently performed using laparoscopic 

technique offering rapid recovery (Nguyen and Varela, 2017). In addition, large, long-

term observational studies demonstrate that bariatric/metabolic surgery is associated 

with reductions in all cardiovascular risk factors, actual cardiovascular events, cancer 

and death (Cummings and Rubino, 2018). More investigations are necessary to 

explore the mechanisms of glycaemic control post-bariatric surgery and the optimal 

surgical procedure for the treatment of obese patients with T2D and CVC (Maleckas 

et al., 2015). 

Other unconventional, alternative approaches have also been applied for T2D 

and CVC management. Intake of polyunsaturated fatty acids has been shown to 

improve glycaemic control, particularly in Asian subjects (Coelho et al., 2017). 

Dietary supplements, including chromium, as well as nutritional anti-inflammatories 

have also been implicated as potential candidates for T2D management, particularly 

as adjunct remedies (Huang et al., 2018, Merone and McDermott, 2017). The effect 

of psychological practices such as meditation and yoga have also been evaluated, 
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with positive outcomes ranging from lowering of inflammatory gene expression to 

potential reduction in T2D complications, thereby improving quality of life and overall 

well-being (Lee et al., 2019, Thind et al., 2018, Varghese et al., 2018).  

 

2.A.VII Personalised Medicine in T2D and CVC: The Role of Genetics and 

Genomics in Clinical Enhancing Management  

Personalised Medicine (PM) is the individualization of therapies based on 

patient-specific attributes for better management or treatment of the disease, in 

contrast to the currently practised “one size fits all” or phenotype-based approach to 

clinical management (Aghaei Meybodi et al., 2017, Estampador and Franks, 2018). 

Hence, PM in T2D and CVC, or any other disease for that matter, would entail 

incorporating the patient’s genetic architecture to an individual’s clinical 

characteristics for tailored medical management. Stratified medicine (SM), on the 

other hand, appears intermediary between current clinical approach and 

personalised medicine; SM entails grouping of individuals based on disease risk or 

therapy response (Bell, 2014). Another term, which is often interchangeably used 

more for PM rather than SM is precision medicine. However, there are arguments 

surrounding the use of this term including the editorial published by Siest (2014) 

stating that medicine is not at all or could not be precise (Siest, 2014). 

The application of PM in diabetes began over just a decade ago with the 

advent of molecular biology techniques, which have increasingly been made more 

available and affordable by various manufacturers (Aghaei Meybodi et al., 2017, 

Florez, 2017). The primary and effective first uses were on monogenic forms of 

diabetes (i.e. maturity-onset diabetes of the young (MODY) and neonatal diabetes) 

due to single gene target – in MODY, target genes included HNF4A, GCK, HNF1A, 

PDX1, HNF1B, and NeuroD1, while in neonatal diabetes target genes included 
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KCNJ1, ABCC8, IDDM2, PTF1A, and FOXP3 (Malandrino and Smith, 2011). For 

T2D management, however, PM poses several challenges mainly due to the 

polygenic nature of T2D. No single gene region has been found for T2D underlining 

the complexity of laboratory and clinical investigations including pathway 

mechanisms and interplay with other biochemical processes, environmental 

contributions, and epigenetic changes (Aghaei Meybodi et al., 2017) . This 

complexity also applies  to CVD  as no single gene can explain its cause (Ho et al., 

2020). Genetic testing in the context of PM for designing T2D treatment regimen is 

mainly categorized in three purposes or factors, namely: (1) to identify risk for 

disease development; (2) to identify genetic variation(s) of T2D; and (3) to predict 

drug response (Elk and Iwuchukwu, 2017), which may also be applicable to CVC. 

Pharmacogenetics is the discipline that examines genetic variations and 

investigates how they affect therapeutic outcomes and incidence of adverse effects 

(Mannino et al., 2019). Pharmacogenomics, on the other hand, is the study of the 

simultaneous impact of multiple mutations in the genome which may be 

determinants of drug response and effects (Dere and Suto, 2009). Both 

pharmacogenetics and pharmacogenomics, therefore, are at the core of PM for T2D 

and CVC.  Linkage studies, T2D candidate gene investigations, and genome-wide 

association studies (GWAS) have identified several T2D susceptible genes, and 

many investigations have established the effects of these gene variations on drug 

efficacy and toxicity (Aghaei Meybodi et al., 2017, Elk and Iwuchukwu, 2017). This is 

further explained with examples cited in Section 5.C.1. This is also true for CVD; 

further explanations and examples can be found in Section 5.C.II. Undoubtedly, 

pharmacogenetics and pharmacogenomics are highly relevant in developing 

pharmacoeconomically viable and relevant treatment strategies for complex 

multifactorial diseases such as T2D and CVC (Elk and Iwuchukwu, 2017). 
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Nevertheless, the use of genetics and genomics in the study of multifactorial 

diseases is underscored, from investigations on disease treatment with 

pharmacogenetics and pharmacogenomics at the core as discussed in this section, 

as well as studies on disease pathogenesis, prevention, and epigenetics. 

Epigenetics is the study of processes involved in the alteration of gene activity 

without changing the DNA sequence; these modifications can be passed on to 

daughter cells which may or may not be reversible (Weinhold, 2006). Two of the 

most studied epigenetic processes are DNA methylation and chromatin modification, 

and current evidence suggests that SNPs are associated with these two processes 

(Leung et al., 2012, Weinhold, 2006). For instance, Bell et al characterized a 

differentially methylated region having T2D-associated SNPs near FTO (Bell et al., 

2010). Overall, several publications report that genetic variants can modify 

epigenetic features, and it appears true vice versa – epigenetic variations may also 

mediate genetic variations (Leung et al., 2012). Genetics and genomics studies are 

therefore clearly significant contributors for the study of multifactorial diseases such 

as T2D and CVC. 

 

2.A.VIII. The Data Accessed: UK Biobank (UKB) 

 In the advent of big data and data sharing, biobanks have gained increasing 

popularity over the last two decades, particularly for healthcare and clinical research 

applications (Bernasconi et al., 2020, Henderson et al., 2019, Virani and Longstaff, 

2015). The main aim of biobanks is the provision of bio-samples and related data for 

future use in biomedical research (Langhof et al., 2018). Biobanks are often large 

scale resources linked to medical or public health data and are distinguished from 

biorepositories in that the latter are merely stored biological samples from clinical 

investigations (Thompson and McNamee, 2017). The global-wide interest birthed 
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from this revolutionary idea with an apparent advantage of huge data set formation, 

which may address various scientific hypotheses along with growing breakthroughs 

in genetics, led to considerable ventures among many governments and private 

industries (Caulfield and Murdoch, 2017, Thompson and McNamee, 2017). Given 

that biobanks are huge entities with organizational structures, systems, and business 

plans in place, several stakeholders are involved including prominent research 

bodies such as ethical and biomedical experts, with several structural and 

operational differences compared to traditional research (Henderson et al., 2019, 

Verlinden et al., 2016).  

Informed consent (IC), a universally recognized requirement in most, if not all, 

forms of research, is perhaps the most controversial in biobanks mainly due to 

samples and data re-use, raising questions on the need for re-consent thereby re-

contact of participants (Goisauf et al., 2019). The gravity of its impact in biobanks 

with regard to probable lawsuit has been exemplified in an occurrence in Texas, 

USA when over 5 million blood samples from newborn babies have been destroyed 

when five parents sued the company for failure to obtain consent (Caulfield and 

Murdoch, 2017). Other issues surface around age-related concerns, such as 

involvement of pediatric or adolescent populations (McGregor and Ott, 2019). 

Evidence also suggests that the trust of the participants to the inviting organization is 

fundamental for increased participation (Broekstra et al., 2019). Critical assessment 

of biobanks and the UKB framework is presented in Section III.7. 

The contents of this next paragraph are derived from the UK Biobank Ethics 

and Governance Framework Version 3.0 (October 2007). The UK Biobank is a 

global healthcare research resource resulting from longitudinal personal, medical, 

and biological data collected from approximately 500,000 UK residents, aged 40-69 

years old. Its governing and funding bodies include UK Biobank Limited, Board of 
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Directors, the University of Manchester as the Coordinating Centre, six Regional 

Collaborating Centres composing the Steering Committee involved in scientific 

design of the resource, and an independent Ethics and Governance Council. 

The framework is subdivided into four primary parts: (1) Relationship with 

participants (describes recruitment, understandings and consents, and 

confidentiality; (2) relationship with research users (stewardship of data and 

samples, and research access to data and samples); (3) relationship with society 

(management and accountability, external governance, benefit sharing, transfer of 

assets or closure), and (4) adoption, implementation and revision.  

 
2.B. Systematic Review of MetS Association Studies  
2.B.I. MetS Genome-wide Association Studies 

Several MetS GWASs, which are easily accessible online via GWAS Central, as 

well as many other MetS association studies particularly candidate gene association 

studies, have been published. The identification and critical analysis of reports on all 

SNPs from all MetS association studies worldwide may be important for further 

research, such as selecting participants at higher risk for development of MetS 

complications. In addition, systematic suggestions may be offered, which may further 

shed light to the study of MetS in general, and MetS genetics in particular. 

In GWAS Central, reports within the decade preceding the Covid pandemic (i.e. 

2010-2020; 2020 included given approximately 14 months from research project 

development to publication (Tumin et al., 2022)), twelve studies (Kong and Cho, 

2019, Kraja et al., 2011, Kristiansson et al., 2012, Lee et al., 2018, Lin et al., 2017, 

Lind, 2019, Moon et al., 2018, Oh et al., 2020, Shim et al., 2014, Willems et al., 

2020, Zabaneh and Balding, 2010, Zhu et al., 2017) were found on record for MetS 

GWAS with MetS as at least a binary trait (i.e. at least two abnormal measurements 

or levels of glucose, BMI or waist circumference, triglycerides, and blood pressure) 
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(Kong and Cho, 2019, Kraja et al., 2011, Kristiansson et al., 2012, Lee et al., 2018, 

Lin et al., 2017, Lind, 2019, Moon et al., 2018, Oh et al., 2020, Shim et al., 2014, 

Willems et al., 2020, Zabaneh and Balding, 2010, Zhu et al., 2017). These are 

presented in Appendix 5. 

 Korea had the most number of articles included with five publications, followed 

by the United States (US) with two reports, and one publication each from the United 

Kingdom (UK), Finland, Taiwan, China, and Sweden. The publications from Korea 

were produced from different institutions, groups, or authors, which may indicate that 

Korea is making significant progress in genetics studies on MetS. Between zero and 

eighty novel SNPs were reported to be associated with MetS as at least a binary 

trait. The publication from the UK that utilised the UK Biobank data reported 80 novel 

SNPs, which was the highest number reported (Lind, 2019). No novel SNP for 

compound MetS phenotype was reported in the publication from the UK in 2010 

(Zabaneh and Balding, 2010). Notably, all twelve reports were open access. The 

majority (five reports; 42%) of the articles were published in genetics journals.  

 

2.B.II. MetS Candidate Gene Association Studies 

For candidate gene association studies, a systematic search in PubMed was 

performed in February 2023-April 2023. Key concepts were: (1) Metabolic syndrome 

(MetS) and  (2) Single nucleotide polymorphism (SNP). 

Controlled vocabulary terms or subject terms were: Metabolic Syndrome, 

Cardiometabolic Syndrome, Dysmetabolic Syndrome X, Insulin Resistance 

Syndrome X, Metabolic Cardiovascular Syndrome, Metabolic Syndrome X, Metabolic 

X Syndrome, and Reaven Syndrome X. 

The protocol used for literature search on Metabolic Syndrome (MetS) and 

associated Single Nucleotide Polymorphisms (SNPs) was as follows: 
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(“Metabolic Syndrome”[Title/Abstract] OR “MetS”[Title/Abstract]  OR “Metabolic 

Syndrome”[MeSH] OR “Cardiometabolic Syndrome”[MeSH]  OR “Dysmetabolic 

Syndrome X”[MeSH] OR “Insulin Resistance Syndrome X”  [MeSH]  OR “Metabolic 

Cardiovascular Syndrome”[MeSH] OR “Metabolic Syndrome X”[Mesh]) OR 

“Metabolic X Syndrome” [MeSH] OR “Reaven Syndrome X”[MeSH]  AND (“Single 

nucleotide polymorphism”[Title/Abstract]  OR “SNP”[Title/Abstract]  OR 

“SNPs”[Title/Abstract]  OR “single nucleotide polymorphism”[Mesh] OR 

“SNPs”[Mesh]). 

The result yielded a total of 886 publications. Excluding irrelevant articles (e.g. 

not related to MetS, for other diseases), duplications, and irretrievable articles, the 

total number of publications assessed was 135 studies.  

Of these, numerous SNPs from various genes were identified as being 

associated with MetS. The oldest included study was from 2005, with rs718049 

PTPN1 SNP found to be associated with MetS (Spencer-Jones et al., 2005). Several 

of the most recent studies, published in 2022, reported associations with MetS 

including rs7895833 (Sirt1) (Tao et al., 2022), rs266729 and rs3774261 (ADIPOQ) 

(Truong et al., 2022), and rs1169288, rs2464196, and rs735396 (HNF1A) (Dallali et 

al., 2022). FTO was one of the most studied and reported genes, with various SNPs 

identified as being associated with MetS (Kawajiri et al., 2012, Molina-Luque et al., 

2021, Nagrani et al., 2020, Velazquez-Roman et al., 2021).  

In the article of Chuluun-Erdene in 2020 (Chuluun-Erdene et al., 2020), aside 

from ADIPOQ, PGC1, and FTO, rs285, a SNP of LPL was included to be reported as 

associated with MetS amongst Mongolian subjects. However, LPL is not widely 

reported compared to other genes in terms of association with MetS, T2D, or CVC, 

although evidence (Goodarzi et al., 2004, Huang et al., 2011) and more recent 

studies from various populations (Alinaghian et al., 2019, Bozina et al., 2013, 
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Castellano-Castillo et al., 2018, Czyzewska et al., 2010, Hsu et al., 2021, Mus et al., 

2019, Vishram et al., 2016) suggest that it may be of particular significance to the 

pathogenesis of these related disorders. The selection of this particular gene, which 

may subsequently be of importance for preventive and therapeutic studies to curb 

these highly prevalent chronic diseases, is therefore strongly supported by current 

publications. Focusing on this LPL gene, particularly those with conflicting 

interpretations of pathogenicity as mentioned, will facilitate a better understanding of 

its contribution, while also providing a manageable yet significant data size for 

analyses. Moreover, finding associations and comparisons on T2D and CVC 

diagnoses in individuals with these LPL SNPs, as well as predicting confirmed 

diagnoses of both conditions in this cohort, will add valuable information to the 

currently limited knowledge on these SNPs. The advent increasing use, and 

popularity of genetic and genomic studies, added with modern technology, will 

undoubtedly be useful tools in the deepening the understanding of MetS, T2D, and 

CVC, including the role of LPL.  

 

3. MATERIAL AND METHODS 
 

The UKB data was used for this study (UKB reference for Research Ethics 

Committee (REC) approval 16/NW/0274). The UKB Research Analysis Platform 

(RAP), an online platform managed by DNANexus, was accessed from October 

2023-December 2023. The data of interest from the cohort was filtered and 

downloaded. The inclusion criteria were participants in the UKB (age: 40-69 years 

old) with the seven SNPs of the LPL gene reported to have conflicting interpretations 

of pathogenicity: rs268, rs11542065, rs116403115, rs118204057, rs118204061, 

rs144466625, and rs547644955; exclusion criteria included presence of cancer and 

other serious illness from recruitment baseline. Variables associated with MetS, T2D, 
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and CVC were selected from the data set that included: sex, age, weight, BMI, waist 

circumference (WC), hip circumference (HC), smoking and alcohol drinking status, 

physical activity, and diet variation (Meigs et al., 2006) were accessed for each 

participant. Blood pressure (systolic and diastolic), cholesterol levels, HbA1c and 

glucose levels, as well as diagnosis of T2D and CVC were also included. In addition, 

the standard polygenic risk scores (PRS) for the relevant parameters in this study 

(PRSs for T2D, cardiovascular disease (CVD), body mass index (BMI), glycated 

haemoglobin, coronary artery disease (CAD), atrial fibrillation (AF), high-density 

lipoprotein (HDL), low-density lipoprotein (LDL), and hypertension) were added.  

CVC is defined for this study as any or combination of heart attack, angina, 

stroke, and high blood pressure; in the UKB data, this was collectively presented as 

presence of heart or vascular problems (HVP) as diagnosed by a doctor. CVC is 

used as a surrogate marked of cardiovascular disease (CVD) in this study. T2D was 

identified in participants with ICD-10 (International Classification of Diseases 10th 

Revision) diagnosis code E11 (code for Type 2 diabetes mellitus). Normal 

distribution was found on test of data normality for all continuous variables (Appendix 

2). Average and standard deviation were calculated for each group for the selected 

parameters.  

 Data were analysed using SPSS ver. 29. Primary outcomes were incidence of 

T2D and CVC, and prediction of T2D or CVC diagnosis among individuals with the 

LPL SNPs of interest. Direct logistic regression was performed to assess the impact 

of a set of predictor variables on the odds that the participants have been diagnosed 

with T2D or CVC at the time of recruitment. A total of four models have been 

assessed for both T2D and CVC diagnoses as outlined in the subheadings of the 

following sections.  
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3.A. Descriptive characteristics 

Test of data normality for the variables was conducted and were all found to 

have normal distribution (Appendix 6). Average and standard deviation were 

calculated for each group for the selected parameters. The total number of 

individuals in the UK Biobank for the seven specified SNPs was 17,386 when filtered 

individually, and 17,364 when filtered together, wherein the difference is attributed to 

participants having at least two SNPs. No participant was excluded in the study due 

to participation withdrawal as per UKB’s notice to UKB researchers. Participants with 

cancer (N=1,355) and with other serious non-cancer medical condition or disability at 

baseline (N=3,137) were excluded in the study. The total number of participants 

included in the study was 12,872.  

 

3.B. Comparison of groups in relation to T2D and CVC diagnosis 

Data analyses of group comparisons on T2D and CVC incidence based on 

type of SNPs (i.e. seven SNP groups (i.e. one group corresponds to all participants 

with the same SNP) plus another, 8th, group (i.e. participants with 2 heterozygous 

SNPs)) and zygosity (i.e. heterozygous versus homozygous versus combination of 2 

hetrozygous SNPs) were performed using chi-square independent test for bivariate 

association analyses.  

One-way Analysis of Variance (ANOVA) was used to compare differences 

amongst groups with the different metric-value parameters such as BMI, waist 

circumference, lipids, HbA1c, and blood glucose levels as well as PRS scores. Post-

hoc analyses were performed. 

 

3.C. Comparison of groups in relation to variables 

Correlation and partial correlation analyses were performed on BMI and waist 

circumference versus T2D and CVC diagnosis, and was further differentiated to 
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compare results between males and females. Partial correlation was performed 

between LDL levels and waist circumference while controlling for age. Simple 

boxplots were generated using IBM SPSS Statistics version 29. All data points, 

including outliers, were retained in Figure 2 to provide a complete representation of 

data variability and to allow visual identification of participants with extreme 

anthropometric values, which may have clinical and epidemiological significance; 

outliers were excluded in Figure 3 to improve visual clarity and facilitate comparison 

of median and interquartile ranges between groups. This approach enhances the 

interpretability of the plots by allowing the central distribution of the data to be more 

easily visualized, which aligns with recommendations for descriptive graphics on 

such comparisons (Frigge et al., 1989, McGill et al., 1978). 

 

3.D. Prediction of Confirmed T2D diagnosis 

3.D.I. Prediction of confirmed T2D diagnosis by clinical parameters 

 The model contained 15 independent variables normally accessible in clinical 

settings (age, sex, weight, height, BMI, waist circumference (WC), hip circumference 

HC), systolic BP, diastolic BP, number of days per week of moderate physical 

activity, diet variation, smoking status, alcohol drinking status, random blood 

glucose, HbA1c). 

 

3.D.II. Prediction of confirmed T2D diagnosis by clinical parameters and T2D-

associated Polygenic Risk Scores (PRS): Model D2 

The model contained a total of 18 independent T2D-relevant variables 

including the above-stated clinical parameters (i.e. 15 variables) plus three T2D-

relevant PRSs (PRS for T2D, BMI, and glycated haemoglobin).  

 
 
3.D.III. Prediction of confirmed T2D diagnosis by clinical parameters, T2D-
associated PRS and SNPs: Full model for T2D 

Direct logistic regression was performed with the addition of the LPL SNP 

groups as a parameter to the above model (i.e. total 19 variables). 
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3.D.IV. Prediction of confirmed T2D diagnosis by SNPs using Model D2 

LPL SNP groups were filtered or selected as separate cases (i.e. Model D2 

was used for individuals with rs268 only, and so on using other SNPs) and direct 

logistic was performed.  

 

3.E. Prediction of confirmed CVC diagnosis 
3.E.I. Prediction of confirmed CVC diagnosis by clinical parameters 

 The model contained 15 independent variables normally accessible in clinical 

settings, as with D.1. 

 

3.E.II. Prediction of confirmed CVC diagnosis by clinical parameters and CVC-

associated PRS: Model E2 

The model contained a total of 22 independent CVC-relevant variables 

including the above-stated clinical parameters (i.e. 15 variables) plus seven CVC-

relevant PRSs (PRS for BMI, CVD, atrial fibrillation, coronary artery disease (CAD), 

hypertension, LDL, HDL).  

 

3.E.III. Prediction of confirmed CVC diagnosis by clinical parameters, CVC-

associated PRS and SNPs: Full model for CVC 

Direct logistic regression was performed with the addition of the LPL SNP 

groups as a parameter to the above model (i.e. total 23 variables). 

3.E.IV. Prediction of confirmed CVC diagnosis by SNPs using Model B2 

LPL SNP groups were filtered or selected as separate cases and direct 

logistic was performed using Model E2.  

 



                                         

40 
 

4. RESULTS 
 
4.A. Descriptive characteristics 

The total number of subjects analysed in the cohort was 12,872 (mean age 56 

years +8.1. 90.0% were of British ethnicity, and 53.9% were females. All 18 

participants with multiple SNPs had 2 SNPs each, which were heterozygous for both 

SNPs (Table 1). A total of 111 (0.86%) participants had homozygous variations 

involving rs116403115, rs115426065, and rs268 (1, 1, and 109 individuals, 

respectively). 

The mean baseline weight and BMI were 77.8 +15.5 kg and 27.3 +4.6 kg/m2, 

respectively. There were 474 (3.7%) participants who had Type 2 diabetes (T2D), 

and 3,651 (28.4%) had heart or vascular problems (HVP; interchangeably called 

cardiovascular conditions or CVC in this study) as diagnosed by a doctor. Presence 

of T2D was identified with diagnosis of ICD-10 code E11 (non-insulin dependent 

diabetes mellitus) amongst participants, and CVC was defined by the presence of 

one or more of the following: high blood pressure, angina, heart attack, or stroke. 

Baseline characteristics are presented in Table 2.  

Most participants (93.3%) were alcohol drinkers, and a majority (59.0%) had 

history of smoking on study enrolment. Most also reported engaging in moderate 

exercise for at least 10 minutes on 5.4 +1.9 days per week (n=12,681). Dietary 

variation was reported as ‘sometimes’ by 56.9% of participants and ‘never/rarely’ by 

34.8%. 
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Variant ID Zygosity n Total 

rs118204061 Heterozygous 10 10 

rs144466625 Heterozygous 19 19 

rs116403115 
Homozygous 1 

69 
Heterozygous 68 

rs115426065 
Homozygous 1 

276 
Heterozygous 275 

rs118204057 Heterozygous 311 311 

    

rs547644955 Heterozygous 224 224 

rs268 
Homozygous 109 

11,945 
Heterozygous 11,836 

rs144466625; 
rs547644955             

Hetero; hetero 1 

18 

rs115426065; 
rs547644955 

Hetero; hetero 6 

rs115426065; rs268 Hetero; hetero 1 

rs118204057; rs268 Hetero; hetero 8 

rs118204057; 
rs547644955 

Hetero; hetero 1 

rs547644955; rs268 Hetero; hetero 1 

 TOTAL     12,872 

Table 1. Frequency distribution per variant ID  
shows zygosity, number of participants, totals and overall total. 
Notably, there are pronounced differences in sample sizes,  
particularly when compared with variant ID rs268.  
Hetero = heterozygous n = number of participants 
 

  N Mean Std Dev 

Weight (kg) 12,693 77.8 15.5 

BMI (kg/m2) 12,843 27.3 4.6 

Waist circumference (cm) 12,856 89.9 13.2 

Systolic BP_mmHg 12,051 139.6 19.5 

Diastolic BP_mmHg 12,052 82.3 10.7 

Glucose(mmol/L) 11,199 5.1 1.2 

Glycated haemoglobin 
(HbA1c) (mmol/mol) 

12,224 36.0 6.7 

Total Lipids in HDL (mmol/L) 3,043 2.9 0.6 

Total Lipids in LDL (mmol/L) 3,043 2.5 0.6 

Age diabetes diagnosed 612 51.6 11.9 

Table 2. Baseline characteristics of participants, including key 
MetS-associated clinical parameters, N, mean, and standard deviation,  
providing comparative context for normative population data  
Std Dev =standard deviation; N = total number of participants;  
BMI = body mass index; BP = blood pressure; HDL = high-density lipoprotein;  
LDL= low-density lipoprotein 
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4.B. Comparison of groups in relation to T2D and CVC diagnosis 

4.B.I. SNPs vs diagnosis of T2D and CVC 

A chi-square test for independence indicated a significant association 

between SNPs and T2D (𝛘2 (7) = 64.09, p<.001), as well as between SNPs and 

CVC (𝛘2 (7) = 36.68, p <. 001). (See Figure 1). 

  

4.B.II. Zygosity vs diagnosis of T2D and CVC 

A chi-square test for independence indicated no significant association 

between zygosity and T2D (Fisher Exact Test p = .176chi-square assumptions not 

met); nor between zygosity and CVC (𝛘2 (2) = .546, p = .761). 

 

4.B.III. SNPs vs clinical parameters 

Statistically significant differences between groups were observed for weight, 

BMI, diastolic BP, total lipids in lipoprotein between groups, and HbA1c as 

determined by one-way ANOVA (p < .001). Significant differences were also found 

for waist circumference, HDL, and LDL (p < .05). (See Table 3). 

Post-hoc Tukey analyses revealed significant differences between 

rs11542065 and rs268 as well as between rs118204057 and rs54764995, 

rs54764995 and rs268 (p < .001). Additional significant differences were found 

between rs118204057 and rs115426065, and between rs268 and rs54764995 (p < 

.05). 

 

4.B.IV. SNPs vs Polygenic Risk Scores (PRS) 

Significant differences were observed in all parameters tested: PRS for BMI 

and HDL (p <. 001); PRS for T2D, CVD, AF, CAD, HbA1c, HT, and LDL (p < .05). 
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A.   

B.  
Figure 1. Diagnosis of outcomes amongst individuals with the SNPs for: A. T2D, B. 
CVC, showing the percentage of diagnosed versus non-diagnosed individuals. 
Significant associations were found between SNPs and both T2D and CVC. 
T2D = Type 2 diabetes, CVC = cardiovascular conditions, 2 SNPs = presence of 2 
SNPs as defined in Table 1 
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                        SNPs N Mean 

Std. 
Deviation 

 
                        SNPs N Mean 

Std. 
Deviation   

 

Weight (kg) 

1 
rs118204061 

10 79.1 21.2 
 

Waist 
circumference 
(cm) 

1 
rs118204061 

10 91.0 17.2 

 

2 
rs144466625 

19 80.0 18.9 
 

2 
rs144466625 

19 90.9 13.6 

 

3 
rs116403115 

69 76.4 16.8 
 

3 
rs116403115 

69 90.3 14.9 

 

4 
rs115426065 

271 82.1 15.8 
 

4 
rs115426065 

275 92.1 12.8 

 

5 
rs118204057 

308 77.8 16.2 
 

5 
rs118204057 

311 90.4 13.6 

 

6 
rs54764995 

221 81.7 16.7 
 

6 rs54764995 223 92.6 13.0 

 7 rs268 11,777 77.6 15.5  7 rs268 11,931 89.8 13.2 

 8 2_SNPs 18 72.2 14.9  8 2_SNPs 18 86.2 13.6 

 Total 12,693 77.8 15.5  Total 12,856 89.9 13.2 

     

ANOVA        

df 7      

ANOVA        

df 7 

     F 5.7      F 2.8 

     p < .001      p 0.006 

 

BMI(kg/m2) 

1 
rs118204061 

10 26.2 5.7 
 

Total Lipids in 
HDL (mmol/L) 

1 
rs118204061 

4 2.7 0.6 

 

2 
rs144466625 

19 28.3 5.5 
 

2 
rs144466625 

4 2.6 0.5 

 

3 
rs116403115 

69 27.6 4.6 
 

3 
rs116403115 

14 2.9 0.7 

 

4 
rs115426065 

273 28.9 5.0 
 

4 
rs115426065 

75 3.0 0.7 

 

5 
rs118204057 

311 27.4 5.0 
 

5 
rs118204057 

70 2.7 0.5 

 

6 
rs54764995 

221 29.3 5.1 
 

6 rs54764995 62 2.8 0.5 

 7 rs268 11,922 27.2 4.5  7 rs268 2,810 2.9 0.6 
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 8 2_SNPs 18 26.9 4.6  8 2_SNPs 4 2.5 0.4 

 Total 12,843 27.3 4.6  Total 3043 2.9 0.6 

     

ANOVA        

df 7     
ANOVA        

df 7 

     F 12.1     F 2.1 

     p < .001     p 0.043 

 

Diastolic BP 
(mmHg) 

1 
rs118204061 

9 87.1 8.9 
 

Total Lipids in 
LDL (mmol/L) 

1 
rs118204061 

4 2.3 0.7 

 

2 
rs144466625 

18 88.2 10.3 
 

2 
rs144466625 

4 2.3 0.6 

 

3 
rs116403115 

64 80.9 9.6 
 

3 
rs116403115 

14 2.3 0.7 

 

4 
rs115426065 

269 84.6 10.9 
 

4 
rs115426065 

75 2.2 0.6 

 

5 
rs118204057 

297 82.1 11.0 
 

5 
rs118204057 

70 2.5 0.7 

 

6 
rs54764995 

219 84.6 12.4 
 

6 rs54764995 62 2.3 0.5 

 7 rs268 11,158 82.2 10.6  7 rs268 2,810 2.5 0.6 

 8 2_SNPs 18 79.8 13.9  8 2_SNPs 4 2.4 0.9 

 Total 12,052 82.3 10.7  Total 3,043 2.5 0.6 

     

ANOVA        

df 7     
ANOVA        

df 7 

     F 4.7     F 2.4 

     p < .001    B.     p 0.019 

 

Total Lipids 
in 
Lipoprotein 
Particles 
(mmol/L) 

1 
rs118204061 

4 8.4 1.2 
 

Systolic BP 
(mmHg) 

1 
rs118204061 

9 142.2 19.8 

 

2 
rs144466625 

4 7.5 1.2 
 

2 
rs144466625 

18 149.8 25.0 

 

3 
rs116403115 

14 8.0 1.8 
 

3 
rs116403115 

64 135.7 18.1 

 

4 
rs115426065 

75 7.9 1.6 
 

4 
rs115426065 

269 139.8 19.0 

 

5 
rs118204057 

70 8.9 1.7 
 

5 
rs118204057 

297 139.3 19.9 
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6 
rs54764995 

62 7.8 1.3 
 

6 rs54764995 219 141.3 22.0 

 7 rs268 2,810 8.8 1.7  7 rs268 11,157 139.5 19.5 

 8 2_SNPs 4 8.0 2.3  8 2_SNPs 18 136.8 24.8 

 Total 3,043 8.8 1.7  Total 12,051 139.6 19.5 

     

ANOVA        

df 7     
ANOVA        

df 7 

     F 6.8     F 1.4 

     p < .001      p 0.194 

 

Glycated  
haemoglobin  
(HbA1c) 

1 
rs118204061 

9 39.3 14.0 
 

Glucose(mmol/L) 

1 
rs118204061 

9 5.7 2.4 

 

2 
rs144466625 

18 36.3 6.4 
 

2 
rs144466625 

17 5.1 0.5 

 

3 
rs116403115 

67 37.0 6.8 
 

3 
rs116403115 

61 5.1 1.3 

 

4 
rs115426065 

235 39.2 11.2 
 

4 
rs115426065 

232 5.3 1.6 

 

5 
rs118204057 

298 36.3 7.4 
 

5 
rs118204057 

272 5.1 1.3 

 

6 
rs54764995 

176 39.9 9.6 
 

6 rs54764995 199 5.1 1.2 

 7 rs268 11,404 35.9 6.4  7 rs268 10,394 5.1 1.2 

 8 2_SNPs 17 35.3 3.4  8 2_SNPs 15 5.1 0.8 

 Total 12,224 36.0 6.7  Total 11,199 5.1 1.2 

     

ANOVA       

df 7     
ANOVA        

df 7 

     F 17.5     F 0.9 

 A.     p < .001    C.     p 0.510 

  
Table 3. One-way Analysis of Variance (ANOVA) between groups showing significant difference at (A) p < .001 (weight, BMI, diastolic BP, total 
lipids in lipoprotein between groups, and HbA1c as determined by one-way ANOVA); and (B) at p < .05) (waist circumference, HDL, and LDL) ; C 
showing no significant difference amongst SNPs (numbered 1 to 8) and assessed parameters (as per clinical parameter indicated). SNP = single 
nucleotide polymorphism, N = number of participants, Std. = standard, 2 SNPs = presence of 2 SNPs as per Table 1, df = degrees of freedom, F = 
ANOVA F-statistic indicating magnitude of difference between group means, BMI = body mass index, BP = blood pressure, HDL = high-density 
lipoprotein, LDL = low-density lipoprotein
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4.C. Association of variables across different groups 

4.C.I. Correlation between BMI and waist circumference with T2D and CVC 

diagnosis in individuals with these SNPs 

Amongst individuals with SNPs investigated in this study, there was a positive 

correlation between T2D diagnosis and both BMI (r = .180) and waist circumference 

(r = .201), p < .001. A positive r value indicated that higher BMI or waist 

circumference was associated with a greater likelihood of T2D diagnosis. The 

correlation coefficients fall within the “small” range according to Cohen’s criteria 

(0.10–0.29), suggesting that, while the associations were not strong, they were 

consistent and unlikely to be due to chance given the large sample size. 

  Similarly, a positive correlation was observed between CVC diagnosis and 

both BMI (r = .248) and waist circumference (r = .261), p < .001. These coefficients 

were slightly higher than those observed for T2D, indicating a marginally stronger 

association between increased adiposity measures and CVC diagnosis in this 

cohort. Thus, individuals with higher BMI and larger waist circumference were more 

likely to have a CVC diagnosis, with waist circumference showing a slightly stronger 

relationship than BMI for both conditions. 

Overall, the results suggest that, in this SNP-defined population, central 

adiposity (as measured by waist circumference) may be a marginally better predictor 

of both T2D and CVC diagnoses than BMI, with these associations being more 

pronounced for CVC than for T2D. 

Simple boxplots of BMI and waist circumference by diagnosis of T2D and 

CVC are shown in Figure 2. 

 

4.C.II. Correlation between BMI and waist circumference with T2D and CVC 

diagnosis in individuals with the SNPs: Males and Females compared 

When comparing males and females, the correlation between BMI and waist 

circumference was consistently positive in both sexes, indicating that higher values 

for these anthropometric measures were associated with a greater likelihood of 

diagnosis. 

For T2D, the correlation coefficients for females were r = 0.164 (BMI) and r = 

0.178 (waist circumference), while for males they were slightly higher at r = 0.199 

(BMI) and r = 0.209 (waist circumference). These positive r values, all statistically 

significant, fall within the “small” range according to Cohen’s conventions (0.10–
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0.29), but the slightly higher values in males suggest a marginally stronger 

relationship between adiposity and T2D diagnosis in men compared to women. 

For CVC, the pattern was similar. Among females, the correlation coefficients 

were r = 0.238 (BMI) and r = 0.241 (waist circumference), while among males they 

were slightly higher at r = 0.252 (BMI) and r = 0.258 (waist circumference). These 

values approach the upper end of the “small” range and were stronger than those 

observed for T2D, indicating that both BMI and waist circumference have, to some 

extent, greater association with CVC diagnosis than with T2D in this population. 

Again, the higher r values in men suggest that the association between measures of 

adiposity and CVC is modestly stronger in males compared to females. 

In summary, the consistently positive and statistically significant correlation 

coefficients indicate that in both sexes, higher BMI and waist circumference were 

related to increased likelihood of T2D and CVC diagnoses, with waist circumference 

showing slightly stronger associations than BMI, and these relationships being 

marginally more pronounced in males. 

 Boxplots of BMI and waist circumference by diagnosis of T2D and CVC, 

stratified by sex are shown in Figure 3. 

 

4.C.III. Partial Correlation between waist circumference and LDL levels while 

controlling for age 

There was no significant partial correlation between waist circumference and 

LDL levels while controlling for age, r = -.006, p > .05. The r value was extremely 

close to zero, indicating an almost complete absence of a linear relationship between 

waist circumference and LDL levels in this sample when the effect of age was 

accounted for. An inspection of the corresponding zero-order correlation coefficient (r 

= −0.007) showed an essentially identical value, suggesting that controlling for age 

did not meaningfully alter the association. The minimal difference (Δr = 0.001) 

indicates that age was not a confounding factor in the relationship between waist 

circumference and LDL levels in this dataset. 
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Figure 2. Simple boxplots of body mass index (BMI, kg/m²) and waist circumference 
(circum; cm) by diagnosis of type 2 diabetes (T2D) and cardiovascular conditions 
(CVC). Panels I.A and I.B show the distribution of BMI and waist circumference, 
respectively, for participants with and without T2D. Panels II.A and II.B show the 
same for participants with and without CVC. In each plot, the central line inside the 
box indicates the median, the lower and upper edges of the box represent the 25th 
and 75th percentiles (interquartile range, IQR), and the whiskers extend to the most 
extreme values within 1.5 × IQR from the box. Data points beyond the whiskers are 
plotted individually as circles (mild outliers; >1.5 × IQR but ≤3 × IQR from the 
quartiles) or asterisks (extreme outliers; >3 × IQR from the quartiles). A large number 
of outliers were present in all groups, representing individuals with particularly high 
BMI or waist circumference, which may be clinically relevant for assessing metabolic 
and cardiovascular risk. Median BMI and waist circumference were higher in 
participants with T2D than those without, whereas marginal differences were 
observed between CVC and non-CVC groups.  
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Figure 3. Boxplots of body mass index (BMI, kg/m²) and waist circumference (WC, 
cm) by diagnosis of type 2 diabetes (T2D) and cardiovascular conditions (CVC), 
stratified by sex. Panels I.A and I.B display BMI and WC distributions, respectively, 
for participants with T2D. Panels II.A and II.B show the same for participants with 
CVC. Blue boxes represent males and orange boxes represent females. In each 
plot, the central line inside the box denotes the median, X represents the mean, the 
lower and upper edges represent the 25th and 75th percentiles (interquartile range, 
IQR), and whiskers extend to the most extreme values within 1.5 × IQR from the 
quartiles. There were marginal differences in BMI for males and females with T2D or 
CVC, while males with T2D or CVC had higher waist circumference than females 
with T2D or CVC. 
  
 
  
4.D. Prediction of confirmed T2D diagnosis 

4.D.I. Prediction of confirmed T2D diagnosis by clinical parameters 

 The model containing all predictors (a total of 15 variables) was statistically 

significant, χ2 (20, N = 9,668) = 1399.3, p < .001. The accuracy, specificity, and 
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sensitivity for the model were 97.1%, 99.4%, 38.5%, respectively. The AUC in ROC 

analysis was .959 (p < .001). 

 

4.D.II. Prediction of confirmed T2D diagnosis by clinical parameters and T2D-

associated Polygenic Risk Scores (PRS): Model D2 

 The model containing all predictors (a total of 18 variables) was statistically 

significant, χ2 (23, N = 9,623) = 1,427.2, p < .001. The model as a whole correctly 

classified 97.1% of the cases; specificity was 99.4%, and sensitivity was 38.0%. The 

AUC in ROC analysis was .961 (p < .001). 

 

4.D.III. Prediction of confirmed T2D diagnosis by clinical parameters, T2D-

associated PRS and SNPs: Full model for T2D 

 The addition of the SNPs as predictor (a total of 19 variables; χ2 (30, N = 

9,623) = 1516.0, p < .001) correctly classified 97.3% of the cases; specificity was the 

same at 99.4%, and sensitivity increased to 42.5%, representing a 4.5% increase.  

 Six independent variables made a unique statistically significant contribution 

to the model, namely age, BMI, HP, diastolic BP, and standard PRS for T2D  (p < 

.05; Table 4). The strongest predictor of T2D diagnosis in participants with the LPL 

SNPs investigated in this study was the Standard PRS for T2D. This indicated that 

the odds of participants being diagnosed with T2D were 1.6 times greater for each 

unit increase in PRS score, controlling for other factors in the model.  

A ROC curve based on the full prediction model is presented in Figure 4; the 

AUC was .965 (p < .001). 

 

4.D.IV. Prediction of confirmed T2D diagnosis by SNPs using Model D2 
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Four SNPs had a sufficient number of participants for data analysis: 

rs116403115 (n = 69, 7.2% with T2D), rs118204057 n = 311, 3.2% with T2D), 

rs547644955 (n = 224, 12.5% with T2D), and rs268 (n = 11,945, 3.6% with T2D). On 

investigation, three SNPs– rs116403115, rs118204057, and rs547644955- 

demonstrated 100.0% sensitivity and specificity. The sensitivity for rs268, which had 

the highest number of N, was 42.5%. 

 For the three SNPs with 100.0% specificity, sensitivity, and accuracy (i.e., 

rs116403115, rs118204057, and rs54764495), the AUCs were 1.0 as expected (p < 

.001). The AUC for rs268 was .963 (p < .001).  



                                         

 
 

54 

Variables B S.E. Wald df Sig. Exp(B) 
95% C.I.for EXP(B) 

Lower Upper 

Age at Recruitment 0.064 0.012 27.239 1 < .001 1.066 1.041 1.092 
Sex(1) -0.055 0.265 0.044 1 0.834 0.946 0.563 1.591 
Weight (kg) -0.068 0.044 2.392 1 0.122 0.934 0.856 1.018 
Height Standing (cm) 0.088 0.048 3.352 1 0.067 1.092 0.994 1.200 
BMI (kg/m2) 0.355 0.13 7.491 1 0.006 1.426 1.106 1.84 
Waist circumference (cm) 0.034 0.013 6.389 1 0.011 1.035 1.008 1.062 
Hip circumference (cm) -0.061 0.017 12.790 1 < .001 0.941 0.910 0.973 
Ever Smoked   0.573 2 0.751     
Ever Smoked(1) 1.055 1.494 0.498 1 0.48 2.871 0.154 53.695 
Ever Smoked(2) 1.004 1.492 0.453 1 0.501 2.730 0.147 50.798 
Alcohol Drinker status   1.787 3 0.618     
Alcohol Drinker status(1) -0.399 0.352 1.283 1 0.257 0.671 0.336 1.338 
Alcohol Drinker status(2) -17.238 17612.815 0.000 1 0.999 0.000 0.000   
Alcohol Drinker status(3) 0.250 0.382 0.430 1 0.512 1.284 0.608 2.714 
Systolic BP (mmHg) 0 0.005 0.007 1 0.932 1 0.989 1.010 
Diastolic BP (mmHg) -0.045 0.010 20.983 1 < .001 0.956 0.938 0.975 
Physical Activity -0.036 0.036 0.958 1 0.328 0.965 0.899 1.036 
Variation in Diet   2.461 3 0.482     
Variation in Diet(1) -0.832 0.880 0.894 1 0.344 0.435 0.078 2.441 
Variation in Diet(2) -0.488 0.896 0.297 1 0.586 0.614 0.106 3.551 
Variation in Diet(3) -0.737 0.874 0.711 1 0.399 0.479 0.086 2.655 
Glucose (mmol/L) -0.003 0.045 0.005 1 0.941 0.997 0.912 1.089 
HbA1c (mmol/mol) 0.196 0.011 303.998 1 < .001 1.216 1.190 1.243 
Variant Group   8.581 7 0.284     
Variant Group(1) 1.438 3.692 0.152 1 0.697 4.211 0.003 5848.791 
Variant Group (2) 0.745 3.595 0.043 1 0.836 2.106 0.002 2416.766 
Variant Group (3) -27.199 3198.500 0.000 1 0.993 0 0 . 
Variant Group (4) -0.734 3.582 0.042 1 0.838 0.480 0 536.881 
Variant Group (5) 1.109 3.551 0.097 1 0.755 3.030 0.003 3194.619 
Variant Group (6) 0.353 3.527 0.010 1 0.920 1.424 0.001 1431.903 
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Variant Group (7) 1.569 3.723 0.178 1 0.673 4.802 0.003 7087.110 
Standard PRS for T2D 0.491 0.084 33.959 1 < .001 1.634 1.385 1.927 
Standard PRS for BMI 0.042 0.081 0.270 1 0.603 1.043 0.890 1.222 
Standard PRS for HbA1c -0.042 0.073 0.333 1 0.564 0.959 0.831 1.106 
Constant -28.068 8.919 9.902 1 0.002 0.000     

Table 4. Logistic regression outcome for T2D diagnosis using the full prediction model. Table shows that six independent variables 
(age, BMI, HP, diastolic BP, and standard PRS for T2D) made a unique statistically significant contribution to the model (p < .05), 
with the Standard PRS for T2D being the strongest predictor of being diagnosed with T2D, indicating that the odds were 1.6 times 
greater that the participants were diagnosed with T2D with per unit increase of PRS score, controlling for other factors in the model.  
B = B coefficient (representing change in the log-odds of the outcome for a unit change in variable), S.E. = standard error, Wald =  
(B/S.E.)^2, T2D = type 2 diabetes, BMI = body mass index, BP = blood pressure, HbA1c = glycated haemoglobin, PRS = polygenic 
risk score, df = degrees of freedom, Sig. = significance (p < .05 bolded to emphasize significance), Exp(B) = exponential value of B 
coefficient (e^B), 95% C.I. (confidence interval) for EXP(B) = range within which the true odds ratio is likely to fall with 95% 
confidence (lower and upper values shown defining the boundaries of the 95% C.I.). Physical activity is defined as number of 
days/week of moderate physical activity 10+ minutes. SPSS coding used (reference- used as baseline for comparison): Sex = 0 for 
female, 1 for male; Ever smoked = 0 for No, 1 for Yes; Alcohol drinking status = 0 for never, 1 for previous, 2 for current (reference); 
Variation in diet = 0 for never/rarely, 1 for sometimes, 2 for often; Variant Groups: 1 = rs118204061 (reference), 2 = rs1444466625, 
3 = rs116403115, 4 = rs11542065, 5 = rs118204057, 6 = rs547644955, 7 = rs268, 8 = 2 SNPs.  
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  Figure 4. Receiver Operating Characteristic (ROC) curve of the full model for prediction  
  of T2D diagnosis, showing predicted probability (blue curve)) in relation to reference line  

                                  (red line), indicating high classification accuracy (AUC = .965, p < .05) for the studied  
  cohort (N = 12,872). T2D = type 2 diabetes, AUC = area under the curve  
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4.E. Prediction of confirmed CVC diagnosis 

4.E.I. Prediction of confirmed CVC diagnosis by clinical parameters 

 The model containing all predictors (a total of 15 variables) was statistically 

significant, χ2 (20, N = 9668) = 1,852.2, p < .001. The accuracy, specificity, and 

sensitivity for the model were 74.8%, 91.4%, 32.1%, respectively. The AUC in ROC 

analysis was .772 (p < .001). 

 

4.E.II. Prediction of confirmed CVC diagnosis by clinical parameters and CVC-

associated PRS: Model E2 

 The model containing all predictors (a total of 22 variables) was statistically 

significant, χ2 (27, N = 9623) = 2,132.9, p < .001. The model as a whole correctly 

classified 75.8% of the cases, specificity was 90.9%, and sensitivity was 37.1%. The 

AUC in ROC analysis was .790 (p < .001). 

  

4.E.III. Prediction of confirmed CVC diagnosis by clinical parameters, CVC-

associated PRS and SNPs: Full model for CVC 

 The addition of the SNPs as predictor (total 23 variables; χ2 (34, N = 9,623) = 

2158.6, p < .001) correctly classified 75.9% of the cases, specificity was the same at 

90.9%, and sensitivity increased to 37.5%, a small increase of 0.4%.  

Twelve independent variables made a unique statistically significant 

contribution to the model: age, WC, HC, alcohol drinker status, systolic BP, diastolic 

BP, variation in diet, HbA1c, variant group, and standard PRS for CVD, BMI, and 

hypertension (p < .05; Table 5); In reference to other SNPs, the odds of being 

diagnosed with CVC differs. Being a current alcohol drinker as well as the PRS for 

hypertension show higher odds ration of 1.7 and 1.5, respectively, controlling for 

other factors in the model.  
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A ROC curve based on the full prediction model for CVC (AUC = .837, p < 

.001) is presented in Figure 5. The AUC for the full model was .837 (p < .001).  

 

4.E.IV. Prediction of confirmed CVC diagnosis by SNPs using Model E2 

 Upon investigation of SNP groups with sufficient number of participants for 

data analysis (four SNPs: rs11542065 (n=276, 32.6% with CVC), rs118204057 

(n=311, 29.3% with CVC), rs547644955 (n=224, 43.8% with CVC), and rs268 

(n=11,945, 27.9% with CVC)), rs547644955 had the highest sensitivity at 75.9%, 

specificity 83.1%, and accuracy 80.9% (ROC curve showing AUC = .910, p < .001, is 

shown in Figure 5). The other 3 SNPs (rs11542065, rs118204057, and rs268) had 

lower sensitivity (50.8, 33.8, and 36.9, respectively). 
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Variables B S.E. Wald df Sig. Exp(B) 
95% C.I.for EXP(B) 

Lower Upper 

Age at Recruitment 0.0700 0.004 311.141 1 < .001 1.072 1.064 1.081 
Sex(1) -0.103 0.094 1.198 1 0.274 0.902 0.750 1.085 
Weight (kg) 0.021 0.018 1.375 1 0.241 1.021 0.986 1.058 
Height Standing (cm) -0.020 0.018 1.268 1 0.260 0.980 0.946 1.015 
BMI(kg/m2) 0.035 0.053 0.434 1 0.510 1.035 0.934 1.148 
Waist circumference (cm) 0.030 0.005 36.574 1 < .001 1.030 1.020 1.040 
Hip circumference (cm) -0.038 0.007 32.137 1 < .001 0.962 0.950 0.975 
Ever Smoked   5.076 2 0.079     
Ever Smoked(1) 0.247 0.468 0.278 1 0.598 1.280 0.512 3.201 
Ever Smoked(2) 0.363 0.467 0.604 1 0.437 1.438 0.576 3.590 
Alcohol Drinker status   12.934 3 0.005     
Alcohol Drinker status(1) 0.064 0.135 0.225 1 0.635 1.066 0.818 1.390 
Alcohol Drinker status(2) 0.762 0.952 0.642 1 0.423 2.143 0.332 13.847 
Alcohol Drinker status(3) 0.518 0.148 12.226 1 < .001 1.678 1.256 2.244 
Systolic BP (mmHg) 0.016 0.002 69.259 1 < .001 1.016 1.012 1.020 
Diastolic BP (mmHg) 0.021 0.003 37.719 1 < .001 1.021 1.014 1.028 
Physical activity -0.008 0.014 0.319 1 0.572 0.992 0.966 1.019 
Variation in Diet   22.046 3 < .001     
Variation in Diet(1) -0.015 0.388 0.001 1 0.969 0.985 0.461 2.108 
Variation in Diet(2) 0.138 0.396 0.122 1 0.727 1.148 0.529 2.493 
Variation in Diet(3) 0.250 0.387 0.418 1 0.518 1.284 0.602 2.740 
Glucose (mmol/L) 0.006 0.026 0.050 1 0.823 1.006 0.957 1.057 
HbA1c (mmol/mol) 0.013 0.005 6.400 1 0.011 1.013 1.003 1.024 
Variant Group   25.564 7 < .001     
Variant Group(1) 2.924 1.268 5.314 1 0.021 18.617 1.549 223.696 
Variant Group(2) 2.238 1.169 3.663 1 0.056 9.377 0.948 92.786 
Variant Group(3) 1.966 1.134 3.005 1 0.083 7.143 0.773 65.966 
Variant Group(4) 1.518 1.131 1.803 1 0.179 4.565 0.498 41.865 
Variant Group(5) 2.276 1.138 3.998 1 0.046 9.734 1.046 90.597 
Variant Group(6) 1.586 1.120 2.006 1 0.157 4.884 0.544 43.853 
Variant Group(7) 1.353 1.331 1.034 1 0.309 3.871 0.285 52.593 
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Standard PRS for CVD 0.103 0.039 7.076 1 0.008 1.108 1.027 1.195 
Standard PRS for BMI -0.059 0.027 4.552 1 0.033 0.943 0.894 0.995 
Standard PRS for AF -0.007 0.029 0.066 1 0.797 0.993 0.938 1.050 
Standard PRS for CAD 0.053 0.039 1.807 1 0.179 1.054 0.976 1.138 
Standard PRS for 
hypertension 0.411 0.030 189.265 1 < .001 1.508 1.422 1.599 
Standard PRS for HDL 
cholesterol -0.023 0.026 0.782 1 0.376 0.977 0.929 1.028 
Standard PRS for LDL 
cholesterol 0.010 0.025 0.162 1 0.688 1.010 0.961 1.062 
Constant -9.443 3.238 8.507 1 0.004 0     

         Table 5. Logistic regression outcome for CVC diagnosis using the full prediction model. Table shows that twelve 
independent variables (age, WC, HC, alcohol drinker status, systolic BP, diastolic BP, variation in diet, HbA1c, variant 
group, and standard PRS for CVD, BMI, and hypertension) made a unique statistically significant (p < .05) contribution to 
the model. Being a current alcohol drinker as well as the PRS for hypertension show high odds ration of 1.7 and 1.5, 
respectively, controlling for other factors in the model. B = B coefficient (representing change in the log-odds of the outcome 
for a unit change in variable), S.E. = standard error, Wald = (B/S.E.)^2, df = degrees of freedom, Sig. = significance (p < .05 
bolded to emphasize significance), Exp(B) =  exponential value of B coefficient (e^B), 95% C.I. (confidence interval) for 
EXP(B) = range within which the true odds ratio is likely to fall with 95% confidence (lower and upper values shown defining 
the boundaries of the 95% C.I.), CVC = cardiovascular conditions, BMI = body mass index, BP = blood pressure, HbA1c = 
glycated haemoglobin, PRS = polygenic risk score, CVD =cardiovascular disease, AF = atrial fibrillation, CAD = coronary 
artery disease, HDL = high-density lipoprotein, LDL = low-density lipoprotein. Physical activity is defined as number of 
days/week of moderate physical activity 10+ minutes. SPSS coding used (reference- used as baseline for comparison): Sex 
= 0 for female, 1 for male; Ever smoked = 0 for No, 1 for Yes; Alcohol drinking status = 0 for never, 1 for previous, 2 for 
current (reference); Variation in diet = 0 for never/rarely, 1 for sometimes, 2 for often; Variant Groups: 1 = rs118204061 
(reference), 2 = rs1444466625, 3 = rs116403115, 4 = rs11542065, 5 = rs118204057, 6 = rs547644955, 7 = rs268, 8 = 2 
SNPs 
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Figure 5. Receiver Operating Characteristic (ROC) curve of the model for prediction of CVC  
diagnosis, showing full model (blue curve) and in individuals with rs547644955 (red curve) 
in relation to reference line (green line), indicating higher classification accuracy for 
rs547644955 (AUC = .910, p < .001; N = 224) than the full model (AUC = .837, p < .001; N 
= 12,872. CVC = cardiovascular conditions, AUC = area under the curve
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5. DISCUSSION 
5.A. Comparison amongst SNPs and association studies 
 
 A review by Brown and Walker in 2016 on MetS GWAS reported that 

the major genomic risk loci  for MetS were in, or close to, lipid-regulating 

genes including LPL (Brown and Walker, 2016). In 2019, a GWAS on MetS in 

the UK Biobank was published, as previously discussed, reporting 80 novel 

independent loci using the harmonized National Cholesterol Education 

Program (NCEP; Appendix) criteria for MetS (Lind, 2019). According to Heart 

UK, MetS is very common amongst the British, with an estimated prevalence 

of 25%, a rate which is consistent with the worldwide MetS prevalence 

(Noubiap et al., 2022). Expanding the body of knowledge on the genetic 

patterns of MetS may provide causal links, preventative insights, and potential 

therapeutic propositions with significant global healthcare impact. 

 In this study, SNPs previously associated with MetS were evaluated in 

relation to the development of T2D and CVC. Significant  associations 

between the SNPs rs268, rs11542065, rs116403115, rs118204057, 

rs118204061, rs144466625, and rs54764495 and diagnosis of both T2D and 

CVC (4.B.1, Figure 1) were found. Previous reports also identified 

associations of LPL SNPs with MetS: rs320, rs328, rs1801177, rs268 (Ariza 

et al., 2010) and rs328 (Cahua-Pablo et al., 2015). In this cohort, rs268 was 

found to be the most common, and previous large studies have reported 

significant findings in relation to MetS (Franceschini et al., 2011, Nejati et al., 

2018, Sagoo et al., 2008). For example, the Human Genome Epidemiology 

(HuGE) Review found consistent lipid effects on coronary heart disease 

(CHD) risk in white participants. Here, however, a MetS feature was the focus, 
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that is CHD, rather than MetS as defined (Sagoo et al., 2008). The Population 

Architecture using Genomics and Epidemiology (PAGE) Study was another 

large study evaluating rs268 and also CHD, but did not find significant 

associations (Franceschini et al., 2011). Its participants were primarily 

Hispanics and Asians, which may signify the crucial role of ethnicity. Notably, 

in this study - comprising 90% British participants - significant differencee 

were found between the seven SNPs and CVC. Therefore, the difference of 

ethicity in the PAGE study (Hispanics and Asians) may be significant to that in 

this study (mostly British). A computational analysis performed on a recent 

study has shown that rs268 (as well as rs328) may affect the protein 

structure, while a meta-analysis done in the same study  indicated that stroke 

risk was decreased in other LPL SNPs (i.e. rs320 and rs285) (Nejati et al., 

2018).  

The differences amongst groups with the assessed clinical parameters 

with significance such as weight, BMI, diastolic BP, and waist circumference 

may be of particular interest for the further study of these SNPs. HbA1c was 

of significant difference, for instance, but not random blood glucose (Table 3A 

and Table 3C). This is in contrast to the two previous studies which evaluated 

an LPL SNP, rs285, which reported the relation of this SNP to both BMI and 

fasting blood glucose (Bozina et al., 2013, Chuluun-Erdene et al., 2020). 

Although this SNP was not included in this study, differences as this warrant 

further scrutiny. In addition, combinations of frequencies in selected genes 

may exacerbate obesity as with the result from a study, which evaluated 

relationships between LPL m107 (rs1800590) and APOA5 S19W (rs3135506) 

and lipid and anthropometric measures (Smith et al., 2010). Combinations of 
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frequencies were not investigated in this study as only the seven LPL SNPs 

were evaluated; however, the combination of these LPL SNPs with other 

genes may be explored in future studies. The utility of PRS for risk prediction 

of both T2D and CVC, amongst many diseases, is gaining interest (Arnold 

and Koenig, 2021, Hahn et al., 2022); however, the non-significant 

association of PRS with the SNPs in this study (4.B.IV) is expected due the 

interplay of numerous factors including environmental influences and 

epigenetic regulation. 

Numerous publications indicate the association of BMI with the 

pathogenesis of both T2D and CVC (Kolb and Martin, 2017, Larsson and 

Burgess, 2021, Meigs et al., 2006). Abdominal obesity, often presented as 

weight circumference as an anthropometric measure, has also been widely 

investigated and reported to be risk factor for both diseases (Franek et al., 

2023, Qiao et al., 2022). A large genetic study in the United Arab Emirates 

has studied genetic associations between T2D and coronary artery disease 

(CAD) and their associations with several cardiometabolic features; this study 

found that the strongest association with CAD was detected with SNP rs264 

in LPL (Osman et al., 2020). In the present study, a stronger association of 

the LPL SNPs is evident, compared to their association with T2D, which can 

be attributed to the role of LPL in fatty acid metabolism (Figure 1). Regarding 

the marginal higher BMI and WC amongst men compared to women with T2D 

which was found in this study (4.C.2), a review article on the sex differences 

on features of diabetes reported a somewhat different, though not entirely 

contradictory; their results indicated that BMI is a better predictor of T2D in 

men, while it is WC for women (Kautzky-Willer et al., 2016). For CVC, the 
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outcome in the study was similar, with slightly higher BMI and WC observed 

amongst men compared to women. However, more studies are required to 

establish distinct features between sexes in CVC (Regitz-Zagrosek and 

Gebhard, 2023). Nevertheless, these differences, including effects of other 

confounding variables may be further investigated with LPL SNPs to clarify 

their role in the pathogenesis of T2D and CVC. 

 Genome-wide association studies (GWAS) for MetS have been 

reported for various ethnic populations and from multiethnic backgrounds 

(Moon et al., 2018, Oh et al., 2020, Tekola-Ayele et al., 2015). In 2011, a 

systematic review on the genetic variants associated with MetS has outlined 

the most studied SNPs linked with MetS (rs9939609 (FTO), rs7903146 

(TCF7L2), C56G (APOA5), T1131C (APOA5), C482T (APOC3), C455T 

(APOC3) and 174G>C (IL6)); LPL was not included in this report (Povel et al., 

2011). A recent (2019) publication on MetS GWAS which has used the UK 

Biobank data has been published, which reported 80 novel independent loci; 

LPL SNP rs3844510 was included although not as a novel finding (Lind, 

2019). The use of larger data sets such as in the latter has been argued to be 

of significance particularly for linkage and candidate gene studies including 

MetS (Monda et al., 2010). Nevertheless, current evidence suggests that the 

genetic risk factors for MetS are strongly connected with the components of 

MetS, including hyperglycemia and dyslipidemia (Taylor et al., 2013). This 

study provides a significant amount of additional information, expanding 

knowledge of LPL SNPs which are not widely investigated for MetS. 

Moreover, the use of the UKB data as a credible source of a large data set is 

a notable strength, adding to the research’s value. 
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5.B. Prediction of Confirmed T2D or CVC 

 Prediction models have been trialled using various parameters, 

including risk factors, to estimate the probability of T2D and/or CVD 

development in multiple studies using logistic regression and machine 

learning approaches (Dinh et al., 2019, Edlitz and Segal, 2022, Joshi and 

Dhakal, 2021). These models may aid in formulating preventive measures for 

those who may be deemed at risk for develeping the disease. In this study, 

the logistic regression model for T2D and CVC had high accuracy, specificity, 

and AUC in ROC analysis. Sensitivity was considerably low, except for 

rs547644955, and rs116403115 and rs118204057 (Sections 4.D.1-III, 4.E.I-

III). However, the ROC AUC is regarded as a superior assessment tool for 

medical diagnostic evaluation due to the arbitrary nature of specificity, 

sensitivity, and accuracy, which is deemed problematic (Hajian-Tilaki, 2013, 

Swets, 1988). Therefore, the ROC AUC better distinguishes between healthy 

versus diseased population (Metz, 1978), and the models assessed in this 

study may be of value (Figure 4 and Figure 5), including the addition of SNPs 

particularly for individuals diagnosed with T2D (Sections 4.D.III and 4.E.III). 

 The variant that showed major significance for both T2D and CVC was 

rs547644955 (Sections 4.D.IV and 4.E.IV). The other two variants with 

significance for T2D were rs116403115 and rs118204057 (Section 4.D.IV). 

There appear to be no substantial publications for rs547644955 and 

rs116403115; therefore these findings may pave the way for a greater 

understanding on these SNPs and clinical applications (e.g. diagnosis, 

prevention, treatment) for individuals identified with these SNPs. There were a 
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few reports directly associated with the variant rs118204057, including 

heritability in ethnic groups (Gagné et al., 1989, Henderson et al., 1992, 

Paulweber et al., 1991). The variant rs268 was the most common in the 

cohort studied, and previous publications reported MetS-specific resuts 

(Franceschini et al., 2011, Nejati et al., 2018, Sagoo et al., 2008). 

Nonetheless, as the full model for both T2D and CVC diagnosis had good 

predictability based on the ROC analysis, these may be have research value 

in addition to mentioned clinical applications, as well as to obesity studies 

overall.  

 Upon exclusion of the genetic parameters on both full models, the 

decrease in AUC was marginal (.959 versus .965 for the full model) for T2D 

(Results section B, D), while that for CVC may be considerable (.772 versus 

.837 for the full model; Results section C, D). Although the clinical relevance 

may need further investigation, the availability of the fifteen variables used in 

the model (i.e. age, sex, weight, height, BMI, WC, HC, systolic BP, diastolic 

BP, number of days per week of moderate physical activity, diet variation, 

smoking status, alcohol drinking status, random blood glucose, HbA1c) are 

readily accessible or easily obtainable in routine healthcare settings. T2D, 

although related to CVD through several similar risk factors, is itself a known 

risk factor for the development of CVD, but the reverse does not seem to be 

true (Dal Canto et al., 2019, Einarson et al., 2018, Kelsey et al., 2022). This 

consideration primarily influenced the selection of PRSs for the full models in 

the T2D and CVC diagnosis prediction models. The full model for CVC 

diagnosis was trialled with the addition of PRSs for T2D and glycated 

haemoglobin, however the result of the AUC in ROC analysis did not differ 
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(result not presented). The American Heart Association (AHA) has recently 

published (2022) a scientific statement regarding PRS for CVD as well as 

other related conditions such as T2D (O'Sullivan et al., 2022). PRS is 

normally derived from single nucleotide variant effect sizes from GWAS then 

adjusted for linkage disequilibrium (Choi et al., 2020), and large 

biorepositories such as the UKB provides these data as what has been used 

in this study. As per summary of the AHA statement, the utility of PRS for 

CVD and associated disorders appears somehow different based on specific 

disease states as evidenced by various research. In CVD, CAD is the most 

studied form in terms of PRS research and its use is mainly geared towards 

pharmacological management (Damask et al., 2020, Khera et al., 2016, Said 

et al., 2018). In T2D, earlier studies point to similar utility of PRS with clinical 

factors, while more recent evidence suggests that PRS may be additive to the 

latter (Mars et al., 2020, Meigs et al., 2008, Talmud et al., 2010). Yet other 

studies suggest unclear significance of T2D high-risk identification (Hivert et 

al., 2011, Said et al., 2018). These findings are relatively in accordance with 

the results of this research in terms of ambiguous usability of PRS addition to 

the prediction model. While some studies suggest PRS for T2D may be useful 

for assessing response to sulfonylureas (Li et al., 2021) and for glucose 

management (Shah et al., 2016), the clinical applications of PRS may be 

worth pursuing in this era of advanced genomic investigations.  

 

5.C. Further Discussion Points and Results Implications 

 In the online resource dbSNP from the NIH National Library of 

Medicine, as described, several details regarding SNPs are available such as 
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frequency (total frequency and frequency from various ethnicities (e.g. 

European, African, Asian, etc.), variant details (such as genomic placements 

including sequence name and change; genomic regions, transcripts, and 

products), Clinical significance (disease name and clinical significance), 

human genome variant society (HGVS) standard, submissions (details of 

submitter, submission ID, and date), history, publications involving the SNPs,  

and flanks (adjacent nucleotide sequences). It is an easily accessible 

reference detailing this information for SNPs, which are used in further 

discussion in this section, with a focus on significant results; list for reference 

can be found in Appendix 4. 

 The LPL SNP rs268 (alleles: A>G) has the highest total frequency 

(global total frequency = 235,134 as of 02 May 2024) amongst the cohort 

studied, which was also observed in this study (i.e. highest n is for rs268, 

which was 11,945). There are 29 citations/publications listed which involve 

this SNP (also the highest among the SNPs of interest in this study). The 

clinical significance was mostly familial hyperlipidemia (pathogenic or risk 

factor) and hyperlipoproteinemia type 1 (uncertain significance), along with 

benign results and conflicting interpretations of pathogenicity. In this study, 

rs268 was significantly associated with confirmed diagnosis of both T2D and 

CVC. For prediction of confirmed T2D, however, the sensitivity for rs268 was 

low (42.5%), particularly in comparison to the three other SNPs 

(rs116403115, rs118204057, and rs547644955), which had sufficient number 

of participants for analyses – these three other SNPs, in fact, had a sensitivity 

of 100.0%. For prediction of confirmed CVC, the sensitivity for rs268 was low 

(36.9%), although this time, two of the three (rs11542065, rs118204057, 
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rs547644955,) other SNPs also had low sensitivity (50.8% and 33.8% for 

rs11542065, rs118204057, respectively) while rs547644955 had a good 

sensitivity of 75.9%. It is important to note here, however, that AUC is a more 

reliable measure, as discussed, and for both the full models for T2D and CVC, 

AUC were acceptable (AUC = .965 and .867, for T2D and CVC, respectively). 

 The LPL SNP rs268 is one of the LPL SNPs, which may be of further 

interest for research primarily because of its highest global frequency in the 

cohort studied compared to the other SNPs in this study. It is a coding 

sequence variant, with missense functional consequence, and located at 

chr8:19956018 (GRCh38.p14).  

 

5.D. Current Conventions and Future Directions 
 As discussed, pharmacogenetics and pharmacogenomics are two of 

the most direct benefactors of genetic and genomic studies in different 

diseases including T2D and CVC for preventive and therapeutic benefits while 

minimizing adverse drug reactions. The primary focus of the study of 

pharmacogenetics is on single genes, while the effects of numerous genes in 

the genome are investigated in pharmacogenomics. There are several 

references online that provide comprehensive data on drug details including 

pharmacological, molecular, and chemical information such as DrugBank 

(https://go.drugbank.com/), PharmGKB (https://www.pharmgkb.org), ChEMBL 

(https://www.ebi.ac.uk/chembl), PubChem (https://pubchem.ncbi.nlm.nih.gov), 

KEGG DRUG (https://www.genome.jp/kegg/drug), and Therapeutic Target 

Database (TTD; http://db.idrblab.net/ttd/). These platforms have their own 

focus (eg. drug and drug target information for DrugBank, pharmacogenomics 

https://www.pharmgkb.org/
https://www.ebi.ac.uk/chembl
https://pubchem.ncbi.nlm.nih.gov/
https://www.genome.jp/kegg/drug
http://db.idrblab.net/ttd/


                                         

 
 

71 

for PharmGKB, chemical molecules and their activities in biological assays for 

PubChem), and are readily accessible for biomedical scientists worldwide. 

Although pharmaceutical profiling was beyond the scope of this 

research particularly given its retrospective nature, it is valuable to provide a 

brief background on the application of these disciplines in T2D and CVD to aid 

in understanding on what we currently know on these diseases. In addition, 

this will help solidify the impact and contribution that this particular study 

provides in this field, being one of the springboards for further investigations 

on the evaluated LPL SNPs, given that only a considerably small number of 

reports have been published. As such, this section outlines the different 

conventional drug classes, drug examples, associated genes, mechanism of 

action, and other drug type-specific parameters for T2D (5.D.1) and CVC 

(5.D.II). 

 

5.D.I. Pharmacogenetics in T2D  

The following texts are all derived and/or summarized from at least one 

or combination of the presented references on this sentence (2016b, 2016a, 

Dawed et al., 2016, Garber et al., 2015, Gentilella et al., 2019, Gloyn and 

Drucker, 2018, Hieronymus and Griffin, 2015, Mannino et al., 2019, Rodbard, 

2018, Srinivasan et al., 2018, Zhou et al., 2016). Accordingly, these texts are 

italicised without specific referencing for each paragraph or section. Genetic, 

genomic, or SNP associations, linkages, or connections to drug types/classes 

presented on this section refer to any or combination of literature on the effect 

of genes, genotype, genetic variants or SNPs to drug interactions, 

metabolism, safety, efficacy, response, use and other drug-related factors 
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encompassing clinical pharmacology (e.g. pharmacokinetics, 

pharmacodynamics, toxicology). 

 
Biguanides 
 Next to lifestyle modification measures, which primarily come in the 

form of diet and physical activity, the use of metformin is usually the first-line 

medication for T2D in the absence of contraindications such as severe renal 

or hepatic insufficiency. The liver is the major site of action for Metformin, 

which belongs to the drug class of biguanides. It has been known to be 

associated with several genes including SLC22A1, SLC22A2, SLC22A3, 

SLC47A1, and SLC47A2, ATM, and IRS1. Numerous studies since year 2007 

have investigated metformin’s pharmacokinetics describing diverse 

phenotypes and specifying gene variants involved. The main advantages of 

metformin over other diabetes therapies include good safety profile, cheap 

cost, and effectivity. Evidence also suggests that it may aid weight loss and 

may be used for T2D prevention and polycystic ovary syndrome (PCOS) 

treatment. One of its known main disadvantages, however, is its insufficiency 

as a monotherapy to meet glycaemic control. 

 

Sulfonylureas 

 Sulfonylureas are previously considered as the first choice for T2D 

management, but are now used as the second-line treatment in combination 

with metformin. Its primary site of action is the pancreas where it directly 

stimulates insulin secretin from the beta cells. Associated genes include 

KCNJ11, ABCC8, CYP2C9, and TCF7L2. Reported benefits of sulfonylureas 

include intensive glucose control for several years and reduction in 
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cardiovascular events as well as decreased all-cause mortality during longer-

term follow-up. Its primary weakness, however, is increased rates of 

hypoglycaemia and weight gain. 

 

Dipeptidyl peptidase (DPP)-4 inhibitors 

 Also known as gliptins, DPP4 inhibitors are classified as incretin 

mimetics because they inhibit a key enzyme in the incretin signalling pathway. 

They mainly act in the intestines and are linked with CYP3A4, CYP2C8, and 

TCF7L2 genes. The increasing use of DPP4 is essentially attributed to its 

good safety profile. As they are relatively new in the market, very few 

pharmacogenetics studies have been conducted. The liver is not important for 

the elimination of gliptins as their main mode of clearance is by renal 

excretion.  

 

Thiazolidinediones (TZDs) 

 TZDs are a group of drugs that act on adipose tissue to increase 

glucose utilization and decrease glucose production. Primary associated gene 

is PPAR-γ; others include ADIPOQ1, CYP2C8, CYP2C9, and CYP3A4. 

Inconsistent outcomes have been reported which may be attributed to 

differences on type of TZDs used, treatment duration, inclusion criteria, 

baseline metabolic conditions, and ethnicity. Major cause of the limited use of 

TZDs has been attributed to severe adverse events such as heart failure, 

myocardial infarction, and bladder cancer.  
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Sodium-glucose transporters (SGLT)-2 inhibitors 

 Also called gliflozins, SGLT-2 inhibitors reduce hyperglycemia through 

glucose elimination via urine, thereby acting in the kidneys. So far, there have 

been no definitive pharmacogenetics studies, however, which directly relates 

genetic variants and SNPs in response to SGLT2 inhibitors. Hence, more 

genetic studies including long-term outcomes of the use of SGLT-2 inhibitors 

for the management of patients with T2D are called for. 

 

α-glucosidase inhibitors 

 The α-glucosidase inhibitors are primarily represented by the drug 

acarbose, which inhibits the upper gastrointestinal enzymes (alpha-

glucosidases) that convert polysaccharide carbohydrates into 

monosaccharides thereby decreasing glucose absorption in the intestines. 

Associated genes for drug efficacy/toxicity include PPAR-γ, HNF4A, and 

LIPC.  

 

Glucagon-like Peptide-1 (GLP-1) receptor agonists (RAs) 

 GLP-1 RAs have well-established safety and efficacy profiles in 

patients with T2D. They enhance prandial insulin secretion in the pancreas 

and can either be long-acting or short-acting. GLP-1 RAs are known to have 

excellent potency in reducing HbA1c and mean glucose, improving fasting 

plasma glucose, and inducing weight loss. They are likewise recognized to 

have cardioprotective effects. Although gastrointestinal side-effects were 

observed, this tends to diminish over time. Associated genes with GLP-1 RAs 

have not yet been identified. 
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Meglitinides 

 Meglitinides are short-acting glucose-lowering drugs which exert their 

effects via pancreatic beta cell receptors. Similar to sulfonylureas, they act by 

increasing insulin secretion, although they are distinct in structure. Implicated 

SNPs associated with T2D include KCNJ11, KCNQ1, UCP2, NAMPT, MDRI, 

PAX4, NEUROD1, and SLCO1B1. 

 

Amylin mimetics 

  Most known in this group of anti-diabetic drugs is pramlintide, a 

synthetic amylin analog acting on pancreatic beta cells. It works by 

suppressing glucagon release in response to caloric intake, delaying the rate 

of gastric emptying, and stimulating the satiety center in the brain to limit 

caloric intake. Although it offers favorable effects to body weight, the risk of 

hypoglycemia is increased along with other adverse effects. Not much is 

known on the pharmacogenetics of this drug class. 

 

5.D.II. Pharmacogenetics in CVC 

Similarly, pharmacogenetic applications for CVC are also gaining 

popularity. A systematic review on pharmacogenetics in CVD published in 

2012 outlined the readiness for clinical use (Verschuren et al., 2012), while a 

newer report in 2023 supports the additive role of pharmacogenomics in 

improving patient care and treatment outcomes (Saleh et al., 2023). Yet 

another two recent publications in 2024 (Ingelman-Sundberg and 

Pirmohamed, 2024) and 2023 (Padmanabhan et al., 2023) provided 

perspective and evaluations on the current role and applications of 
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pharmacogenetics and pharmacogenomics in CVD therapeutics in particular, 

and of precision medicine in general.  

As with how the drug classes have been presented for T2D in the 

preceding section, the following texts summarize the most common CVD 

medications used and the underlining genetics involved - these are all derived 

from at least one or combination of the presented references on this sentence 

(Ingelman-Sundberg and Pirmohamed, 2024, Padmanabhan et al., 2023, 

Saleh et al., 2023, Verschuren et al., 2012).  As such, these texts are 

italicised without specific referencing for each paragraph or section. Also as 

with the preceding section for T2D (5.D.I), genetic / genomic / SNP 

associations, linkages, or connections to drug types / classes presented on 

this section for CVC refer to any or combination of literature on the effect of 

genes, genotype, genetic variants or SNPs to drug interactions, metabolism, 

safety, efficacy, response, use and other drug-related factors encompassing 

clinical pharmacology (eg. pharmacokinetics, pharmacodynamics, toxicology). 

 

Warfarin 

 Preventing or treating thromboembolism is the main role of warfarin, a 

coumarin derivative, which is one of the main stays in CVD therapy. 

Significant pharmacogenetic implications of warfarin include interpatient 

dosing variability, wherein genetic variation accounts for 55-60%, while non-

genetic factors (e.g. age, BMI) comprise a lower approximate of 20%. 

VKORC1, for example, accounts for 25% dosing variability, CYP2CP at 

approximately 15%, and CYP4F2*3 at approximately 1-7%. In addition, 



                                         

 
 

77 

several CYP2C9 alleles require decreased dose due to reduced clearance of 

S-warfarin. 

 

Clopidogrel 

 Clopidogrel is the most known medication in its class, which is primarily 

used as an antiplatelet therapy. Effectiveness of this medication is partly 

attributed to genetic variation. CYP2C19 alleles have different metaboliser 

phenotypes with clopidogrel (e.g. normal metaboliser, intermediate 

metaboliser, or poor metaboliser), while the antiplatelet drugs pasugrel and 

ticagrelol are not affected by this genotype. A number of real-world research 

have investigated the pharmacogenetic effects of these drugs, including 

relative risk of MACE (major adverse cardiovascular events), bleeding risk, 

stroke prevention, and effects when used when added to aspirin dosage. 

 

Direct-acting oral anti-cogaulants (DOACs) 

 Although studies on pharmacokinetics due to genetic variation have 

been done, there are no clinical outcomes reported as yet. However, 

genotype sensitivity to dosing and bleeding risks were indicated, including a 

report that, compared to warfarin, dabigratan had reduced bleeding risk in 

CES1 rs2244613 minor allele. 

 

Statins 

 Statins is another group of medications, which is a cornerstone of CVD 

prevention and therapy with its lipid-lowering capability. On pharmagenetics, it 

has been noted that risk of myopathy increases for more than 1.5 times per 
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copy of SLCOB1B1*5 in patients on a doubled simvastatin dosage.  On 

another note, there were inconsistent reports with CYP3A4, ABCB1, COQ2, 

and GATM. 

 

Beta-blockers 

 Beta-blockers are used for the treatment of heart failure, hypertension, 

and secondary prevention of myocardial infarction. Although currently, there is 

weak evidence for the pharmacogenetics of Beta-blockers, central to its study 

is the variations in CYP2D6, which is responsible for the biotransformation of 

up to 80% of metropolol oral dose. Other genes associated with 

pharmacodynamics rather than pharmacokinetics include ADRB1, ADRB2, 

and GRK5.  

 

Hydralazine 

 Another medication for hypertension is hydralazine. Some NAT2 alleles 

differ in phenotypic characteristics – e.g. homozygous NAT2*5, 6, and 7 

exhibit slow acetylator phenotype, while heterozygous NAT2*4 and  *5 are 

intermediate acetylators. A study also reported that the slow acetylator 

phenotype had better blood pressure reduction with hydralazine, although 

another study indirectly showed that an adverse drug reaction (ADR) in the 

form of lupus-like symptoms appear with the slow acetylator phenotype. 

 

Anti-arrythmic drugs 

 As with beta-blockers, anti-arrythmic drugs are also metabolised by 

CYP2D6. Caution in the use of propafenone amongst patients with CYP2D6 
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deficiency has been released by the FDA when combined with CYP3A4 

inhibition.  

 

Angiotensin-converting enzyme (ACE)-inhibitors 

 ACE inhibitors are another class of medications for treating 

hypertension. The polymorphism most commonly studied in the 

pharmacogenetics of this drug is rs4646994. However, results of research 

studies are inconsistent in terms of mortality risk and therapeutic response 

among others. 

  

5.D.III Pharmacogenetics in T2D and CVC: The Contribution of this 

Study in A Nutshell 

 Based on the aforementioned studies and comprehensive reviews of 

pharmacogenetics in T2D and CVC, it is clear that LPL is not a significant 

player currently. For instance, dosing requirements for individuals suffering 

from T2D or CVC with LPL SNPs, or the risks involved in prescribing the 

various drug classes to individuals with these SNPs, are not yet elucidated 

nor known, to the best of the researcher’s knowledge and latest electronic 

search.  

 In earlier studies conducted in 2002 (Brisson et al., 2002) and 2014 

(Gao et al., 2014), the response to fenofibrate therapy amongst individuals 

with LPL genetic variants was investigated, with findings suggesting that 

these variants may modulate the response to this therapy (e.g. attenuated 

response in the 2014 study). Another study in 2004 (Brousseau et al., 2004) 

evaluated the response to gemfibrozil and found that this medication was 
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associated with LDL subclass response. Research by Munshi in 2012 

(Munshi, 2012) reported that atorvastatin use was associated with poorer 

outcomes in stroke patients with LPL gene variants. No further significant 

studies were identified via electronic search in Pubmed beyond these.  

 Consequently, the body of knowledge from this research project may 

serve as a notable contributor to the relatively small amount of information 

known about LPL, particularly with its role in the development of MetS and 

diagnoses of both T2D or CVC as well as preventive and therapeutic 

measures relating to pharmacogenomics. This includes stratified medicine or 

SM, as previously introduced in Section 2.A.VII – this is defined as grouping 

patients based on disease risk or response to treatments (Bell, 2014).  In this 

context, for example, individuals with the LPL SNPs, or as described in the 

medication classes for T2D and CVC, may benefit from SM. SM offers several 

potential benefits including obvious clinical (primarily patient care) and 

economic advantages, but it also comes with many challenges or 

disadvantages – these include timing mismatch (i.e. predictive biomarker 

science trails the therapeutic,), and that economic value may be questionable 

given cascades of developmental, regulatory, and commercial considerations 

(Trusheim and Berndt, 2015, Trusheim et al., 2011). Other difficulties in this 

field are complex methods and lack of consistency or consensus in terms of 

definitions and strategies (Attar et al., 2019). There are, however, some 

propositions on how to address these challenges, such as those from the 

study of Trusheim, et al., which outlined the use of multiple variable 

stimulations and the selection of optimal research, development and 

commercial approaches (Trusheim et al., 2011). Nevertheless, the 
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applications of this study and the utilization of all research publications on LPL 

to date are of definite importance to the further stratified medicine 

investigations for the chronic diseases in question.  

Precision medicine is another approach, which is a step further 

considering individualized treatments - this was also introduced in the 

previous section. There are numerous publications in precision medicine 

specifically and integrally for obesity, T2D, and CVD. A recent study by 

Szcaerbinski and Florez in 2023 published in the Lancet Diabetes 

Endocrinology presented the development of a multi-disease management 

algorithm, which is primarily obesity-centred but also targets its comorbidities 

(Szczerbinski and Florez, 2023). This again highlights the centrality of obesity 

in these diseases and underscores the applicability of precision medicine for 

obesity even when the targets are, for example, T2D and/or CVD. Another 

study, which is very relevant to today’s world, presented the use or addition of 

artificial intelligence (AI) to genotyping and deep phenotyping, where AI or 

machine learning is used for data integration and relationship exploration 

(Subramanian et al., 2020). The UK Biobank is one of the largest 

organizational bodies providing a significant platform for such approaches. In 

addition to whole genome sequencing, one study has also made use of other 

techniques, such as imaging techniques (e.g. magnetic resonance imaging 

(MRI)), global metabolomics, a new blood test for prediabetes, 

echocardiography (ECHO), electrocardiogram (ECG), and cardiac rhythm 

monitoring for the identification of age-related chronic disease risks, signifying 

the importance of multidisciplinary approaches in understanding multifactorial 

disorders (Perkins et al., 2018).  
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Personalised or precision medicine goes beyond the conventional 

treatment measures, however, and may also be taken from the preventive 

approaches.  An interesting new study involving personalised nutrition and 

LPL rs268 for the lipid cluster (i.e. one of the study groups in the research 

project) presented a protocol for a parallel double-blinded randomised 

intervention trial to investigate biomarker-based nutrition plans for weight loss, 

with the goal of empowering consumers to prevent diet-related diseases 

through omics sciences (which the authors called PREVENTOMICS) - this 

was also the article’s title (Aldubayan et al., 2022). The authors concluded 

that the study results are proof of the use of metabolic and genetic biomarkers 

in providing personalised dietary treatments for overall health benefits 

including reduction in body fat mass. In line with this, on the side of lifestyle 

modification, personalised exercise or physical activity may also be a potential 

consideration for further study in the management of obesity and 

comorbidities. In addition, a combination of both lifestyle and therapeutic 

approaches to the stratification or personalization of treatments may prove to 

be the optimal strategy in developing treatment modalities for different 

diseases including obesity, T2D, and CVD, thus requiring multidisciplinary 

healthcare involvement. 

In summary, the outcomes of this research contribute valuably not just 

on the LPL variants studied, the clinical associations presented, and 

conclusions generated, but also to the current understanding on stratified or 

personalised medicine for obesity, dyslipidaemia, T2D, and CVC. 
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5.E. Strengths and Limitations 

 The main notable strength of this study is the large number of 

participants included in the data analysed. As a result, several statistical 

analyses were performed, including the inclusion of individuals with relatively 

rare LPL SNPs. Furthermore, the source of the data, the UKB, is highly 

reputable source, with regulations and systems in place which are in 

accordance and in compliance with universal ethical and regulatory guidelines 

(copies of the UK Biobank Material Transfer Agreement and the University of 

Staffordshire Research Ethics Proportionate Review are presented in 

Appendix 7 and Appendix 8, respectively).  Although the majority (90.0%) of 

the population was of British ethnicity, the study also involved other ethnic 

groups, which may also be an advantage for the applicability of the results. 

The remaining 10% comprised of African, Bangladeshi, Black or Black British, 

Carribean, Chinese, Indian, Irish, Mixed, Pakistani, White, White and Asian, 

White and Black African, White and Black Carribean, and any other (Asian, 

Black, Mixed, White) background, with 0.41% who preferred not to say, do not 

know, and with no ethnicity information. These classifications generally 

correspond to the high-level (five broad groups: White; Asian or Asian British; 

Black, Black British, Carribean or African; Mixed or Multiple ethnic group; 

Other ethnic group) and detailed (19 categories) ethnic classifications as 

being used by the Office for National Statistics (ONS) for England and Wales 

(eg. per published ONS 2021 census). The British ethnicity specified as 

majority (i.e. 90.0%) as presented throughout this study was White British, 

noting that there were, in addition, 11 (<0.10%) individuals specified as White 

without further category. Nevertheless, these factors result in concrete 
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outcomes and conclusions overall, which may significantly contribute to the 

study of obesity and related comorbidities, with a recommendation for future 

studies on different ethnicities.  

 One of the limitations of this study is the use of surrogate marker for 

CVD - that is, CVC, which was collectively presented as heart or vascular 

problems (HVP) in the UKB data. HVP, as previously discussed, is any or 

combination of heart attack, angina, stroke, and high blood pressure or 

hypertension. The National Health Service (NHS) in the UK specifies CVD as 

four types- coronary heat disease (may be in the form of angina, hear attacks, 

heart failure), strokes and transchemic-ischemic attack (TIA), peripheral 

arterial disease, and aortic disease. Although it is clear that the components 

of HVP are within these types or sub-types, the inclusion of hypertension as 

an HVP or CVC, which in turn is also a MetS parameter in itself, may be a 

limitation. It is important to note here, however, that hypertension alone 

cannot be considered as MetS by itself in binary criteria. In addition, 

hypertension is known as a major CVD risk factor, with several of the 

discussed current CVD pharmacotherapy classes directly preventing or 

treating this condition. 

Another minor limitation of the study is the exclusion of serious medical 

conditions. In the UKB data, the latter was collectively presented based on a 

binary Yes/No information; the details on how this was generated by the UKB 

is presented here. In the UKB assessment centre, a verbal interview included 

specifying "medical conditions" then "non-cancer illness code, self reported." 

This then points to data coding (i.e. data coding 6 via UKB), which is a list of 

the codes and meanings (freely retrievable via UKB online site). Non-cancer 
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medical condition or disability was defined when one or a combination of the 

list of the serious diseases (classified under infections, 

immunological/systemic disorders, gynaecology/breast, 

haematology/dermatology, musculoskeletal/trauma, neurology/eye/psychiatry, 

endocrine/diabetes, renal/urology, gastrointestinal/abdominal, cardiovascular, 

and respiratory/ENT) was identified (i.e. “Yes,” pertaining to the presence of 

other serious non-cancer medical condition or disability). To avoid the effect of 

those on the results of this study, this group has been collectively excluded in 

the study. Although some CVD or CVC and diabetes cases were included, 

given the collective entity for presence of non-cancer disease, these were 

excluded; only confirmed T2D and CVC diagnosed by a doctor as described 

in the UKB data were retained as included in the analyses. 

Also worth mentioning as a minor limitation is the minimum age of 

participants that UKB includes (i.e. from 40 years old). In the recent age, more 

people are receiving a confirmed diagnosis of T2D or CVC at a younger age 

(i.e. under 40 years old) (Barker et al., 2022). In hindsight, had the younger 

age group been included, the primary impact might have been on the age of 

diagnosis and modifiable risk factors rather than genetics, which remain 

constant for any individual. Nevertheless, research on younger population 

with the LPL SNPs evaluated in this study would certainly add value to the 

findings reported on this project. 

 

6. CONCLUSIONS 
 
 This retrospective study investigated the association between MetS-

associated LPL SNPs and the progression to T2D and CVC. Significant  
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associations were identified between the SNPs rs268, rs11542065, 

rs116403115, rs118204057, rs118204061, rs144466625, and rs54764495 

and diagnosis of both T2D and CVC. In addition to previous publications with 

similar findings as discussed in earlier sections, this strengthens the crucial 

role that these SNPs play in the pathogenesis of T2D and CVC, irrespective 

of obesity.   

There were statistically significant differences in weight, BMI, diastolic 

BP, total lipids in lipoprotein, HbA1c, WC, HDL, and LDL between groups, 

suggesting that these variants may have different effects on these clinical 

parameters. It is important to note, however, that the results of this study do 

not signify causation, but only highlight the significant differences in the 

specified clinical outcomes in the groups. BMI and WC were found to be 

significantly higher in individuals who were diagnosed with both T2D and 

CVC. The role of obesity in the development of these two diseases, as well as 

the metabolic interrelatedness of obesity, T2D, and CVC are once more 

evident in these results. It is paramount to combat obesity or excess weight as 

preventive and treatment strategies, with or without pharmaceutical 

interventions, for both T2D and CVC. When sexes were compared, men who 

were diagnosed with T2D and CVC had slightly increased BMI and WC 

compared to women, showing that women may be more prone to developing 

T2D and CVC with lesser weight gain. Ethnicity may play a crucial role in this 

aspect, however, as well as other factors, and further investigations are 

needed to elucidate the outcome differences between sexes.  

Models for predicting confirmed T2D and CVC diagnosis were explored 

using logistic regression on UKB data. The addition of genetic contribution 
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enhanced the AUC values; therefore, the models would better predict 

confirmed diagnosis of T2D or CVC. The additive effect of the LPL SNPs and 

relevant PRS was more pronounced in the CVC than in the T2D model. 

These results are supportive of the important role that genetics and genomics 

play in improving the prediction of T2D and CVC progression in addition to the 

much earlier established clinical parameters. Improved prediction measures 

are beneficial to help prevent the development of these diseases among high 

risk individuals. 

Of the variants studied, rs547644955 had major significance for both 

T2D and CVC diagnoses, with an AUC of 1.0 and .910, respectively. The 

SNPs rs116403115 and rs118204057 both had an AUC of 1.0 for T2D 

diagnosis. These findings are highly important, and these SNPs are worth 

investigating much further in different races and larger cohorts to aid in better 

understanding on how they affect the development of T2D and CVC, in 

general. In particular, the genetic contribution of these SNPs versus the 

environmental and epigenetic factors of T2D and CVC pathogenesis need to 

be evaluated in varying populations. 

  Collectively, the results of this study have implications for stratified or 

personalised medicine amongst individuals with the investigated LPL SNPs. 

However, additional research is required to further elucidate the effects of 

these SNPs in the development of MetS and other obesity-related diseases.  

 

7. PHILOSOPHICAL AND ETHICAL ISSUES 
 

This part of the work is a reflective analysis on the major concerns 

surrounding philosophical and ethical issues in biobanks for research 
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purposes, particularly clinical research, with a focus on the UK Biobank Ethics 

and Governance Framework (EGF), as UKB data was used for this study; no 

other additional source of data or material was used. It is composed of an 

outline of the UKB EGF and critical appraisal. 

 

7.A. UKB Salient Features 

7.A.I. Responsibilities of UKB Staff and Stakeholders 

The UK Biobank REG (research ethics and governance) framework 

has made clear-cut definitions, conditions, and details regarding the biobank’s 

responsibilities to pertinent stakeholders as aforementioned, namely: 

relationship with participants, relationship with research users, and 

relationship with society. In fact, they have highlighted the significance of this 

by making them the main headings (3 out of 4 primary discussion points). 

Paramount subheadings are laid out with succinct yet sufficient information to 

serve the purpose of this section. They have stressed here that relationships 

with these sectors are the most important and is at the core of the biobank’s 

commitment. This is likewise an efficient way to present an organized content, 

with the target audience finding it easy to locate what they seek. Hence, this 

particular feature of the UK Biobank is commendable and is recommended to 

be a model outline for other biobank REG frameworks to follow.  

 

7.A.II Access 

Decisions on access and use are stipulated in the UK Biobank 

framework, under relationship with research users, below research access to 

data and samples. Proposals are thoroughly reviewed and ensured that they 
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are consistent with the participants’ consent and the biobank framework, and 

with relevant ethics approval. It is specified that the Board of Directors will 

have the overall decision-making authority, but may also delegate this 

responsibility to suitable groups or persons as necessary, such as an Access 

Committee. Assurance of public interest is underscored, with existing access 

policies and procedures to follow, handling of conflicts and prioritisation of the 

use of samples, as well as proper explanation to the public and participants. 

This, in this regard, is a good model for other biobanks to shadow. 

 

7.A.III. Participant selection 

 The Biobank sought to recruit not only UK locals, but also various 

ethnicities in the country to maximize the potential of the project. In lieu of this, 

translations of relevant documents were made available for this purpose. This 

has a huge impact for epidemiological studies, as well as epigenetics and the 

role of environment on various diseases. Societal and cultural aspects are 

likewise considered, and may also be ground-breaking, not jut for biomedical 

studies, but also for social science investigations. This feature of the UK 

Biobank makes it a truly global resource for many scientists across the globe, 

in addition to the number of participants half a million strong. 

 

7.B. On Research Ethics and Governance of Biobanks 

Of the factors surrounding ethical concerns with biobanks, the primary 

aspects most often discussed in literature are: (1) informed consent and 

ethical approval; (2) sample and data collection; (3) data privacy and 

biospecimen security; and (4) policies and procedures (Caulfield and 
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Murdoch, 2017, Goisauf et al., 2019, Langhof et al., 2018, McGregor and Ott, 

2019, Mikkelsen et al., 2019, Morrison et al., 2017, Rheeder, 2017, Thompson 

and McNamee, 2017, Verlinden et al., 2016). 

 

7.B.I. Informed consent (IC) and ethical approval 

Six applicable consent models (verbal consent, blanket consent, broad 

consent, meta consent, dynamic consent, and waived consent) may be used 

for research; of which, broad consent that needs to be deep, has been 

recommended for biobank use (Mikkelsen et al., 2019, Thompson and 

McNamee, 2017). 

This broad but deep consent recommended for biobank use requiring 

the definition of unambiguous conditions (i.e. limitations, when to re-contact 

for special projects involving the use of data and biospecimen) appears to be 

agreeable and recommendable. Although no matter how deep this broad 

consent may be, there will still be cases or projects where obscurities may be 

apparent; in this case, it should be defined that participants need to be re-

contacted and that re-consent will be sought. Conditions should also be 

precise when assent is required (specific age cut-off) or dealing with various 

vulnerable groups (properly enumerated, classified, and defined; e.g. minority 

ethnic/institutionalized groups, persons with disability, socially excluded 

groups). In this manner, autonomy and respect for individuals are somehow 

served to a higher extent. Additionally, the principles of justice, particularly 

when regarded at the context of beneficence, are evidently practiced in that 

the value to society far outweighs the burden to the participants in ways 

where each individual’s rights are also considered.  
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The approval of the IC or assent, study protocol, and other relevant 

documents pertaining to a research project is widely known to be one of the 

main responsibilities of the Research Ethics Committee (REC; mostly in 

European countries) or the Institutional Review Board (IRB, primarily in the 

United States of America (USA)), or similar group, which is also the case in 

biobanks.  From here alone, disparity in stakeholder’s appellation is evident, 

which may possibly lead in itself to confusion in the global context. 

Furthermore, the role of the REC/IRB in biobanks may also be challenged in 

that unlike conventional research where it is primarily “most active” so to 

speak, in the initial stages of research, the need for ongoing monitoring for 

biobanks appear essential. This is because numerous research projects may 

be proposed hence applied for by various researchers from a similar data set, 

unlike conventional research centres where RECs/IRBs know the 

organization’s research projects fairly well. Stringent monitoring and control 

are thereby suggested. 

 

7.B.II. Sample and data collection 

 The research participants’ information sheet containing details of the 

study as may be suggested by the National Research Ethics Service (NRES) 

is read by the participants before the IC is presented, and normally includes 

sample and data collection specifics (Kirkby et al., 2012). Minimized risks, in 

agreement with the non-maleficence requisite of research, may be evident for 

basic data collection, anthropometric measurements, and non- to minimally 

invasive sample collection methods (e.g. urine and blood samples). On the 

same note, this is debatable for processes, which may involve harm or 
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increased discomfort to participants such as biopsies or lumbar puncture for 

specimen collection. If the samples are, however, derived from excess clinical 

specimens (i.e. from biorepositories) and consent is derived from the patients 

for research purposes, then that would be an opposite scenario. 

Nevertheless, proper benefit to risk analysis measures should be in place to 

assure solidarity in the processes involved. 

 In biobanks, sample collection may be a one-time event, but data 

collection may be longitudinal since participants’ succeeding records can be 

derived from databases per participants’ consents. In developed countries, for 

example, where medical data is centralized and made accessible as allowed, 

ethical concerns may be raised: “Is justice indeed served when the biobank 

can freely retrieve these ‘non-basic’ information, particularly in ‘what-if’ cases 

(e.g. What if the participant “forgot” about the consent and with that specific 

medical detail about himself, he would really wanted to keep it private? What 

if the patient instead wanted that unique genetic result from that collected 

blood sample be kept to himself, should he just have known?). Scenarios like 

these are typically not addressed, but anyone can argue that it is just 

impossible to tackle every possible case. Perhaps a group of experts from 

different relevant disciplines and from different regions may come up with a 

consensus to particularly tackle concerns as these, in general but 

comprehensive ways, as suggested by literature (Bernasconi et al., 2020).  

 

7.B.III. Data privacy and biospecimen security 

Privacy and security of patient details, medical reports, biospecimen 

and any aspect pertaining to the participants are crucial for many facets of 
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research, but is particularly applicable to data and sample management. In 

practice, access to information from electronic databases such as patient’s 

clinical profiles or laboratory information management systems (LIMS) is often 

restricted to limited personnel within the research department whose 

responsibilities are defined and are often documented. Additionally, the use of 

passwords on computers and applications or systems is probably the most 

utilized method for this purpose. For biospecimen, similar access 

requirements are observed. Governing bodies typically composed of a team 

of experts who are responsible for reviewing, preparing, and granting access 

requests for data and/or samples, often referred to as custodians or 

gatekeepers, is pre-identified (Langhof et al., 2018).  

Although it may be a given that these personnel are properly trained, it 

would be appropriate for transparency’s sake to be explicit about procedural 

details on this matter, primarily for the information of the participants. The 

involvement of rigorous lines of approvals before data or samples are 

released, should also be stipulated. An easily understandable flow chart may 

be of good use for this purpose, with the appropriate approving post or unit 

specified. This may be included in the information sheet for the participants, 

as part of the invitation to participate which goes along with the IC form, or in 

the biobank website where it is accessible to them and to the public. 

Another major element worth mentioning here, significantly applicable 

to biobanks and global networks, is data and sample exchange (DSE) across 

continents, with governing legal and ethical requirements reported by the 

International Clinical Trial Center Network (ICN) (Bernasconi et al., 2020). In 

addition to suggestions in literature to address the lack of globally harmonised 
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facilitation of DSE, perhaps the first issue to be resolved here is the gravity of 

necessity for this exchange. If generalizations or conclusions, for instance, are 

desired from various ethnic groups, review articles from already published 

research studies may work instead. This way, duplication of work, incurred 

expenses, and other associated unnecessary inputs will be avoided.  

 

7.B.IV. Policies and procedures 

The lack of globally harmonized policies on the access of bio-samples 

is also recognized as an ensuing concern, despite availability of international 

guidelines (Langhof et al., 2018). In addition, difficulty to gain access of these 

samples, as well as custodianship disputes, have been reported in several 

reports (Langhof et al., 2018, Verlinden et al., 2016). The currently available 

and internationally recognized or adapted legislations or recommendations for 

medical research which may also be applied to biobanks include the the 

Declaration of Helsinki, the Declaration of Taipei, the Council for International 

Organizations of Medical Sciences (CIOMS) international ethical guidelines 

for biomedical research involving human subjects, the Organization for 

Economic Co-operation and Development (OECD) Guidelines on human 

biobanks and genetic research databases, and the Universal Declaration of 

Bioethics and Human Rights (UDBHR) of the United Nations Educational, 

Scientific and Cultural Organization (UNESCO) which is in line with the 

Declaration on Ethical Considerations Regarding Health Databases and 

Biobanks of the World Medical Association (WMA) (Bernasconi et al., 2020, 

Rheeder, 2017). In Europe, the General Data Protection Regulation (GDPR) 

is accepted as the harmonized legislation, although some deviations are 



                                         

 
 

95 

allowed depending on the member states’ discretion such as permissible 

range of minimum age for consent (Goisauf et al., 2019, Morrison et al., 

2017). 

 In addition to these established principles, new and developing 

guidelines and standards are getting recognized such as the International 

Society for Biological and Environmental Repositories (ISBER) Best Practice 

and the International Organization for Standardization (ISO) biobanking 

standards (Henderson et al., 2019). Although not a guideline on its own, the 

proposal of the Bioresource Research Impact Factor (BRIF) is also worth 

mentioning here, which primarily aims to recognize the efforts of individual 

biobanks; this however, is not anywhere near wide acceptance (Langhof et 

al., 2018). In the UK, the Human Tissue Authority (HTA) is the governing body 

that issues licenses to biobanks, the Research Ethics Committees reviews 

projects, while data access committees may be in charge with data 

requisitions; however, there is no law which is specific for biobanks (Kaye et 

al., 2016). In addition, the question on which committee should approve 

requests for access requests remains controversial (Verlinden et al., 2016). 

Overall, the main challenge that biobanks seem to face appears to be 

in the standardization and unification of policies, procedures, data 

management, and general legislative and ethical framework for all countries to 

follow (Bernasconi et al., 2020, Yang et al., 2016). To start off, suggestions 

from scholars include adaptation of outcomes from previous 

recommendations such as those from the Global Initiative for the Ethical Use 

of Human Specimens (GIFT), creation of a group of experts represented by 

various regions around the globe for preparation of the legislations, and 
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agreement on definition of biobank-specific terms (Bernasconi et al., 2020). 

However, this undoubtedly comes with major challenges. Foremost, 

which organization or body would volunteer to initiate? Is it, in the first place, 

allowed to? From which country? How about funding and resources? And if 

any arises, how can cooperation be assured from many existing biobanks 

across the globe where various existing country-specific laws and regulations 

have also to be considered and approved first despite sincere willingness to 

participate? The role and passion of biobank forerunners here are hence 

extremely crucial to bring this to fruition. Although this may entail such a long, 

laborious process as with many other endeavors, this too shall materialize 

given the commitment of even a select few. It is important to stress here alike, 

that the voice of representatives from various regions, regardless of 

economic, cultural, or social background should always be heard and 

considered, to bar discrimination and for a truly harmonized consensus. 

 

7.C. The UK Biobank Ethics and Governance Framework 
Rooms for Improvement 

7.C.I. Data Privacy 

Concerns regarding data privacy in the UK Biobank may be similar to 

other biobanks in general in that ongoing data collection from centralized 

medical databases, from the NHS in this case, maybe retrieved as per 

participants’ consents. The consent used here is clearly a broad one, and 

given the wide-ranging scope of NHS record systems (e.g. GP, hospital, 

dental, prescription) it can be said that it is a very broad IC indeed. The 

recommended broad but deep consent may be applicable here, to address 

elements of justice and autonomy among the participants (Mikkelsen et al., 
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2019). Although the framework mentions that participants will be informed 

about progress with accessing of records, it also specifies that the consent 

shall cover access to full records. This is quite contradictory. When then will 

the participants be informed? This is blurry which requires clarification and 

further details. 

 

7.C.II. Inclusion Criteria 

The UK Biobank recruited participants with age 40-69 years only and 

excluded some vulnerable groups (such as those with diminished mental 

capacity, the sick, or those uncomfortable with any of the conditions of 

participation). Hence the general concerns about assent and these specific 

groups are addressed. However, other groups, which may not be eligible 

should have been further classified. The framework likewise specified that 

actions will be in accordance with the Data Protection Act as well as other 

legislations, and also stated that staff were trained to judge the capacity of 

potential participants’ eligibility to be included in the project. However, details 

of this training as well as proficiency outcomes of the training should have 

been laid out. Was there a relevant examination for this training to assess the 

competency of the staff for this purpose? This shall be a significant 

contributing feature of the framework if indeed included. 

 

7.C.III. Publication and Finances 

 The UK Biobank’s REG framework is not very clear as well regarding 

publication. Although it is stated that outputs should be published in peer-

reviewed journals, details on selection of proposals as well as pre-publication 
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verification (i.e. data analyses and interpretation in addition to peer reviews for 

enhanced quality assurance and control) are lacking. Adding this information 

to the framework may prove beneficial. For monetary gain to participants, they 

have made it precise that no monetary benefits will be given to research 

subjects except for request on reimbursement of justifiable expense such as 

travel. Any income generated from the resource, it has also been stated, will 

be re-invested back to the biobank. A little more detail on this may be called 

for, but should also be made available upon request of the different 

stakeholders for transparency and accountability.  

 

7.C.IV. Partnership with DNANexus 

 In September 2021, all UKB data and data access have been 

transferred to DNANexus, a cloud-based data management system. This has 

posed difficulties amongst users that an online community has been created 

where the UKB users may be able to ask questions and help each other to 

resolve issues encountered. This is in addition to several online tutorial guides 

that were often in the form of videos and written texts. Online assistance via 

email to the UKB DNANexus group was also made available. On another 

note, security issues in this type of system should be stringent given that very 

large confidential data are at stake. 

 

8. REFLECTIVE ANALYSIS 
 
8.A. Thesis Preparatory Requirements 

The Professional Doctorate in Healthcare Science curriculum from 

University of Staffordshire, formerly Staffordshire University, includes a 
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doctoral research thesis and viva as one of the later requirements for degree 

completion. As a ProfDoc (professional doctorate) program, it differs from a 

PhD (Doctor of Philosophy), in that it is mainly aimed to improve clinical 

practice (Ellis, 2007) while a PhD mainly focuses on academic research. 

There appears to be more varied perception on doctorates rather than PhD 

though, and the applicability of doctoral degrees to clinical settings has been 

suggested to have the need for further clarity and be more streamlined (Ellis, 

2007, Rosenfeld et al., 2022). Nevertheless, the Professional Doctorate in 

Healthcare Science offered by the university is aimed at developing 

leadership skills in the area of students’ expertise, which is surely valuable 

particularly to individuals who wish to pursue higher-level administrative roles 

in the field of healthcare science and related disciplines. 

As the research thesis topic is usually chosen within the field of 

expertise of the student, it is often a norm to derive the data from his/her place 

of work or employment- this is also laid out in the online information for the 

program within the university website. There are cases though, that, this may 

not be feasible due to data sharing restrictions from the employer, for 

instance, which has been the case in this project. Thus, the use of the UKB 

data has been proven to be a valuable alternative, including the discounted 

access fee that UKB offers to students completing theses in universities 

around the world.  

As expected, there were steps and approvals involved in the data 

access from UKB as well as the need for a Proportionate REC approval from 

the university. There have been not much bottlenecks nor issues involved in 

these processes, which included signatories of supervisors and university 
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representative, attesting administrative organization of both UKB and 

University of Staffordshire in this aspect - it has been a smooth process with 

these steps. 

The particular knowledge gained from these steps include biobank 

access processes, research proposal preparation both for biobank and REC, 

ethical and practical considerations, high-level coordination with various 

stakeholders, efficient communication, and effective organization.  

 

8.B. Conduct of the Study: Bottlenecks and Challenges 

 The major issue encountered in the conduct of this project was in 

relation to data access, particularly data download. Initially, data from the UKB 

online resource has been used; however, how the data can be translated to 

readable or usable format has been a chief concern, where how-to guides did 

not seem to work. In 2021, as described, the data management system has 

been transferred via the cloud-based platform from DNANexus – this has 

posed another layer of issues which caused further delay in the progress of 

the study. As the system was new, many researchers accessing the data 

faced various difficulties that personally, different resources, DNANexus and 

UKB access teams, as well as resource persons internationally have been 

reached out for assistance. With persistence and diligence as well as support 

and encouragement from supervisors, the data required for the study has 

been eventually properly accessed and downloaded. 

 There were also other personal situations and circumstances that were 

not necessarily hindrances, but are a part of life, wherein formal pauses from 

the study were needed. This included pregnancy and childbirth, and migration 
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to a new country as well as a new job. Although this caused delay in the 

completion of the program, it has been proven to be a healthy approach in 

terms of physical and mental well-being, finances and resources, balance with 

family and other relational requirements, and other factors. The support of the 

supervisors as well as the university’s program for intermission during the 

course of the study have been demonstrated to be helpful and are well-

appreciated. 

 Also a part of life in general and career move in particular, the transfer 

of two main supervisors to different universities while the thesis is being 

completed has happened. This did not present significant challenge though, 

largely because the main supervisor has been very hands-on as usual. A new 

within-the-university supervisor has also been assigned, and has been very 

helpful likewise. Hence, collaboration and advice from three supervisors in 

three large universities have made the supervision and advice even stronger 

and again, well-treasured. The unswerving support of the university 

administration and the new program lead has likewise been consistent for 

which any student would be grateful. In addition, although on a different note, 

other forms of support from the university are also appreciated, including the 

provision of the SPSS program license to students for data analysis. 

 On the aspects laid out in this section, several skills have been honed 

including that of adaptability, flexibility, time management, diligence and 

coordination. These skills will surely be beneficial to perform duties as a 

researcher and in performing leadership positions, hence will surely be 

applicable in real-world scenarios not just in the workplace, but also in 

everyday life.  
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8.C. Research Study: Notes, Impact, and Future Enablers 

 Although the concept of MetS is known to have begun with its 

introduction by G.M. Reaven in the late 1980s, its history dates back way 

earlier as literature presents accounts of this disease for approximately a 

century (Matfin, 2010). The limited MetS GWAS reports appears to convey a 

message that stern scientific attention to MetS may indeed be lacking, 

particularly compared to studies involving its individual components such as 

obesity, which has much higher number of GWAS reports. This is considering 

that the first GWAS was published in 2005 (Loos, 2020). 

The country of Korea appears to be the strongest player in MetS GWAS 

with the highest number of reports. Although MetS prevalence is growing in 

this country (Lim et al., 2011), this is, however, true globally. The challenge 

lies in the different MetS definition or criteria in assessing prevalence in 

different countries. Moving forward, the need for a unified MetS global 

definition may be found particularly beneficial. How this can be attained, may 

indeed be challenging, however, because organizations that proposed these 

are highly credible authorities in their own entitlements. For these institutions 

to, in fact, agree with a MetS definition consensus may be far-fetched, but as 

with other proposals, essentially not impossible. A strong will and commitment 

from international advocates may indeed be called for.  

Nevertheless, Korea seems to be on the right track in the study of MetS in 

this sense. Other countries, particularly the first world which are resource-rich 

and are already doing intensive molecular studies may need to step up 

further. The absence of GWAS from numerous other nationalities is also 
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worth noting, with only very few countries and regions represented as yet 

accounting for the twelve reports from seven countries. Surprisingly, the total 

number of seven studies from Asia is the highest, with Europe as second with 

three studies, and North America with one study. Therefore, among the 

inhabited continents, no studies have been reported yet from South America, 

Africa, and Oceania. Again, this may be a call to countries such as Australia 

to pursue MetS GWAS studies. 

On another note, advantages of the use of biobanks and similar large data 

repositories are evident with the largest number of novel SNPs reported from 

the UK Biobank. Tapping on these resources may be found particularly helpful 

in the greater understanding of MetS genetics, taking into account various 

ethnicities and populations. Certain genetic considerations may also be 

investigated such as the female-specific study reported from Korea. With over 

120 biobanks in the world, the biggest ones such as Biobank Graz having 

millions of derived human samples, the possibilities are seemingly endless 

and therefore much more can certainly be done. Circulating adverts to 

researchers, students, the academe, and private organizations around the 

world about these resources may be found highly advantageous. 

Another observation of note is how GWAS results are presented, not just 

for MetS studies, but also generally, for other diseases. To have consistent 

content, which is normally presented in tables may be found useful for the use 

of these resources, such as retrieving all SNPs reported globally. For 

instance, required parameters are recommended to always include gene or 

nearest gene, chromosome, and position at the least, as much as possible. 
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Consistent, stringent quality control procedures for GWAS are also expected 

to be in place and explicitly specified or referred to in published manuscripts.  

On top of above notes and recommendations, it is important to mention 

here that although GWAS investigate genetic contributions of SNPs to human 

disorders, prediction of disease risk using GWAS-identified SNPs or SNP 

combinations is not well established (Patron et al., 2019). This is therefore 

another area that needs to be further explored, including that for MetS. 

Moreover, because MetS is linked with increased risk of T2D and CVC, the 

occurrence of the latter two chronic diseases subsequently after being 

diagnosed with MetS and/or having been tested with MetS-associated 

genotype may be interesting to examine. 

On pharmacogenetics, the increasing availability and decreasing costs of 

genetic analysis may pave the way for greater usefulness of this molecular 

level-based technology for this purpose in the future (Gloyn and Drucker, 

2018). However, it does not come without major barriers and considerable 

bottlenecks. One of the foremost necessities is the resolution of the problem 

with big data and its translation to actionable clinical decision system (Aghaei 

Meybodi et al., 2017). In addition, there is a big gap in our knowledge base 

regarding treatments in population subgroups such as adolescents, the 

elderly, and during pregnancy (Gloyn and Drucker, 2018). The use of other 

‘omics’ (e.g. metagenomics and metabolomics) should likewise further be 

used to aid our understanding of other complex interacting networks in order 

to implement cost-effective and best-tolerated treatment strategies (Aghaei 

Meybodi et al., 2017, Scheen, 2016). Nevertheless, personalised medicine in 

T2D management is a truly promising tool for T2D treatment and the fruition 
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of its role in bedside patient care are dependent on extensive scientific 

investigations of varied specializations which are currently evident worldwide, 

and should also be similarly applicable to CVC. 

Although it may be expected that the implementation of PM for T2D 

and CVC management in the future may begin to be a routine practice in first 

world countries, slow progress may be observed in third world countries 

primarily due to lack of resources and expertise. The role of healthcare front-

runners, medical institutions, and government leaders shall be called for if so, 

focusing on strengthening linkages and partnerships with various international 

organizations including the private sector. Retention of scientists to their 

homeland should likewise be reinforced for this purpose. This is something 

that is somehow personally important, coming from a third-world country that 

due to lack of opportunities and promise of better generational advantages, 

have prompted the desire to move. Indeed, there are so many issues in this 

world – health, political, societal, the list goes on; nonetheless, it is with great 

hopes that the outputs of this research study would pave a way, in one way or 

another, in simpler or bigger ways, a healthier, better world. 

 

8.D. The Course, the Degree: What’s Next? 

 The findings from this study, the theoretical and practical learning 

gained from the thesis and the other courses from this program, the 

acquaintances, and all others in-between: what is next, what is next indeed?  

 Without a doubt, the writing of the thesis has been the most 

challenging, laborious, and time-consuming part of the program. But it can be 

said that the benefits arguably go beyond the knowledge gained and skills 
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developed- it has paved the way for the development of a well-rounded 

professional and individual. There is so much more to it than the title, the 

single components of the curriculum, or the anticipation of rewards or return of 

all that have been invested – collectively, it is somehow difficult to describe, 

but overall this achievement is something worth being very, very thankful for. 

It has been a huge blessing to embark on this journey, and it is with great 

hope and excitement to soon embody what it is to be, what it means to be, 

and be of significance as, a Doctor in Healthcare Science.    
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1. Metabolic Syndrome Criteria 
1A. Metabolic Syndrome Criteria Summary. Summary of diagnostic criteria for 
metabolic syndrome proposed by major international organisations. Criteria include 
measures of abdominal/central obesity, lipid abnormalities, blood pressure, fasting 
glucose, and other metabolic risk factors, with variations in thresholds across 
definitions. Adapted from Kassi et al., 2011. 
 

 
 



                                         

 

 
1B. Metabolic syndrome criteria comparison. Comparison of diagnostic criteria 
for metabolic syndrome from various organizations, outlining the specific criteria for 
central obesity, blood glucose, high triglycerides (TG), low high-density lipoprotein 
(HDL), and high blood pressure (BP), as well as a number of criteria required for a 
diagnosis. Adapted from Fahed, et al., 2022. 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



                                         

 

2. Lipid Metabolism Pathway 
2A. Exogenous lipoprotein pathway. Chylomicrons, synthesized in the intestine 
from dietary lipids, are secreted into the lymph and then the bloodstream. Lipoprotein 
lipase (LPL) on the capillary surface hydrolyzes triglycerides (TG) from the 
chylomicrons, releasing fatty acids (FA) for use by muscle, heart, and adipose tissue. 
The resulting cholesterol ester (CE)-rich chylomicron remnants are then taken up by 
the liver via the LDL receptor (LDL-R). Adapted from Feingold, et al., 2000. 
  

 
 
 
2B. Endogenous lipoprotein pathway. The liver synthesizes very-low-density 
lipoprotein (VLDL) particles containing triglycerides (TG) and secretes them into the 
bloodstream. VLDL particles deliver TG to extrahepatic tissues via lipoprotein lipase 
(LPL). As VLDL particles lose TG, they become intermediate-density lipoprotein 
(IDL) and then low-density lipoprotein (LDL), which is rich in cholesterol esters (CE). 
LDL is taken up by extrahepatic tissues and the liver via the LDL receptor (LDL-R). 
Adapted from Feingold, et. Al, 2000. 

 



                                         

 

3. Schematic on the relations among LPL aberration, T2D, CHD. Aberration in 
lipoprotein lipase (LPL) gene may lead to dyslipidemia, being the shared 
intermediate process on the development of the presented diseases. 
Hyperglyceridemia, a feature of dyslipidemia, is involved in regulating the B-cell 
function, pancreatic B-cell apoptosis and the insulin signal cascades, which 
aggravates insulin resistance, which then induces Type 2 diabetes (T2D). 
Hyperinsulinemia induced by elevated triglycerides (TG), may be partly responsible 
for essential hypertension (EH) by its functions on renal hemodynamics, sodium re-
absorption, retention and vascular hypertrophy. Elevated TG is associated with 
atherosclerosis and thromboembolism -  both of these are high-risk factors for the 
development of coronary heart disease (CHD). Dyslipidemia causing dysfunction of  
antioxidation stress in the brain may cause Alzheimer’s disease (AD). Adapted from 
Xie, et al., 2010.  
 
 

 

 

 

 

 
  



                                         

 

4. LPL SNPs in this Study. 
Screenshots of the LPL SNPs in the study from the National Institutes of Health 
National Library of Medicine National Center for Biotechnology Information, detailing 
the variant as a single nucleotide variant (SNV), and pertinent details as minor allele 
frequency (MAF) and Human Genome Variation Society (HGVS) nomenclature. 
 

 
 

 



                                         

 

 
 



                                         

 

 
 

 



                                         

 

 
 

 
 



                                         

 

 
 

 
 

 

 

 

 



                                         

 

5. Reported Metabolic Syndrome (MetS) Single Nucleotide Polymorphisms 
(SNPs) from publications in Genome-wide Association Studies (GWAS) 
Central. 
Screenshots as reported from specified publications presented. 
 
Adapted from Kraja, et al., 2011. 

 
 

 

 

 

 

 

 

 



                                         

 

 

 

Adapted from Kristiansson, et al., 2012. 

 
 

 

Adapted from Shim, et al, 2014. 

 
 

 

Adapted from Lin , et al., 2017. 

 
 



                                         

 

 

 

Adapted from Zhu, et al. (2017). 

 
 

Adapted from Lee, et al., 2018. 

 
 

 

 

Adapted from Moon, et al., 2018. 



                                         

 

Adapted from Kong, et al., 2019. 

 
 

 



                                         

 

Adapted from Lind, 2019. 

 



                                         

 

 



                                         

 

 
 

 

Adapted from Oh, et al., 2020. 

 
 

 

  



                                         

 

Adapted from Willems, et al., 2020. 

 



                                         

 

 



                                         

 



                                         

 

6. Normality Tests for Continuous Variables 
Boxplots presented for primary continuous variables in the study, as derived 
from SPSS version 29; notes at the end of Section 6. 
 
6A. Age at Recruitment Boxplot 

 

 

6B. Weight at Baseline Boxplot 

 

 



                                         

 

 

6C. BMI Boxplot 

 

 

6D. Waist circumference Boxplot 

  

  



                                         

 

6E. Hip circumference Boxplot 

 

 

6F. Systolic BP Boxplot 

 

 

 

 



                                         

 

 

6G. Diastolic BP Boxplot 

 

 

6H. Total Lipids in HDL Boxplot 

 

 

  



                                         

 

6I. Total Lipids in LDL Boxplot 

 

 

6J. Glucose Boxplot 

 

 

 

 



                                         

 

 

6K. HbA1c Boxplot 

 

 

Notes: 

In each plot (6A to 6K), the central line inside the box indicates the median, 

the lower and upper edges of the box represent the 25th and 75th percentiles 

(interquartile range, IQR), and the whiskers extend to the most extreme 

values within 1.5 × IQR from the box. Data points beyond the whiskers 

(except 6A for age) were plotted individually as circles (mild outliers; >1.5 × 

IQR but ≤3 × IQR from the quartiles) or asterisks (extreme outliers; >3 × IQR 

from the quartiles). A large number of outliers were present in most plots and 

were included in the normally distributed data for complete data 

representation and insight provision.  

 

 

 



                                         

 

 

 

 

 

 

 

 

 

 

 

7. UK Biobank Material Transfer Agreement 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 
 
 
 
 

 

 



                                         

 

 

 

 

 

 

 

 

 

8. University of Staffordshire Research Ethics Proportionate Review 

 



                                         

 

 
 
 



                                         

 

 
 
 



                                         

 

 



                                         

 

 
 
 
 
 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 



                                         

 

 
 

 


