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Abstract

Fused Deposition Modelling (FDM) is often used in Additive Manufacturing (AM),
making it popular for producing even the most complex and tailored geometry
forms at low costs. With these advantages, it also has limitations in quality and
efficiency in the products made out of it, influenced strongly by process parameters,
which necessitate the development of predictive tools for ‘control’ of the process.
This present work emphasizes HIPS material to enhance FDM performance through
the establishment of a predictive model using an Adaptive Neuro-Fuzzy Inference
System (ANFIS). The three important input variables are infill density (ID), nozzle
temperature (NT), and printing speed (PS). The output responses are printing time,
dimensional deviation, and surface quality. The experimental matrix is made by using
Taguchi's L27 orthogonal array, and therefore, the multiple performance indices from
the different responses are derived using Grey Relational Analysis (GRA). These Grey
Relational Coefficient (GRC) values obtained from that analysis will then be used as
an input variable for training and testing of the ANFIS model. The model evolved
from one that had shown good performance in prediction and predicted output
responses very well. The model also gives the optimum parameter setting of 25%
infill density, nozzle temperature of 240 °C, and printing speed of 65 mm/s for better
and improved multiple performance. The findings indicate that the proposed ANFIS-
based approach undoubtedly emerges as a strong and effective tool in improving
productivity and dimensional precision, as well as overall quality in FDM of HIPS
material.

Keywords Additive manufacturing, 3D printing, Fused deposition modelling, Taguchi’s
design and analysis, Grey theory, Optimization

1 Introduction

Additive Manufacturing (AM) techniques allow a wider class of structures and more
complex shapes to be made with the help of geometric data obtained from 3D mod-
els. Layer upon layer, material is deposited with this technique. Industries referred to as
“AM” include construction, biomedicals, and prototyping. The construction sector has
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been slow to adopt 3D printing, despite its numerous advantages such as waste reduc-
tion, design freedom, and automation [1-3]. Novel applications built on advancements
in new materials and processes of additive manufacturing (AM) are being developed.
The expiration of some earlier patents has been instrumental in reducing barriers to
entry into this production method, allowing manufacturers to build their own unique 3D
printing machines. Harnessing the fast and cost-efficient prototyping capabilities of 3D
printing, architecture and design have largely embraced the technology for developing
attractive and functional prototypes [4, 5]. The product development costs are further
reduced thanks to 3D printing. Recently, the use of 3D printed parts has increased in
many industries, from prototyping to the manufacture of end products. Due to the high
costs associated with producing customized items, it was very difficult for manufactur-
ers to meet certain consumer needs. Still, Additive Manufacturing (AM) can exploit 3D
printing technology to fabricate customized products cheaply in small batches. This
holds significant value in the biomedical sector, where patient-specific solutions are fre-
quently required [6-8].

As depicted in Fig. 1, the FDM method of 3D printing entails creating layers of materi-
als using a continuous filament of a thermoplastic polymer. The filament is heated until
it becomes semi-liquid at the nozzle to extrude into a platform or on top of already exist-
ing printed layers [9, 10]. Thermoplasticity is one significant property of the polymer

Fig. 1 FDM machine
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filament that blends the filaments during printing, and later on, this filament solidifies
at room temperature after printing is completed. Printing parameters, many of which
determine the mechanical properties, are layer widths, thicknesses, orientations, and
air gaps between or within the layers [11, 12]. Inter-layer distortion was then identified
to be a major factor causing mechanical weakness. The advantages of FDM are its ease
of operation, speed, and relatively low cost. However, the FDM process has shortcom-
ings, including poor surface quality and mechanical properties, visible layer lines, and
a limited selection of thermoplastic materials [13]- [14]. To enhance the performance
of 3D-printed components, fibre-reinforced composites have been developed through
FDM. Nevertheless, achieving proper fibre alignment, developing robust bonds between
the matrix and the fibres, and avoiding voids remain major challenges in fabricating
high-performance 3D-printed composites [15-17]. Aeronautics, automobiles, medical
appliances, electronics, and consumer goods are among the many sectors that depend on
FDM-made components. Yet, the mechanical performance limitations of FDM restrict
the broader industrial adoption of fabricated products [18, 19]. Since the build settings
employed during the process directly affect mechanical properties, careful parameter
selection is crucial to maximize performance. Consequently, extensive efforts have been
devoted to modelling FDM parameters and optimizing process variables [20].

This growing demand for optimized, sustainable materials in manufacturing aligns
with global trends in resource efficiency and circular economy strategies. Recent inves-
tigations into waste-derived materials for structural applications have shown promising
results in reducing environmental impact while improving material performance. For
instance, Olaiya et al. [21-23] demonstrated that banana leaf ash, cassava peel ash, and
other agricultural/industrial by-products can be valorized as supplementary cementi-
tious materials, enhancing pozzolanic activity and contributing to sustainable concrete.
Similarly, studies on sawdust composites [24] and sandcrete bricks produced from
industrial and agricultural waste [25] highlight the potential of integrating low-cost,
recycled, and renewable resources into construction materials. These advances under-
score how material innovation and optimization, whether in traditional construction or
additive manufacturing, can improve mechanical properties while addressing sustain-
ability challenges.

When it comes to FDM, techniques such as the Taguchi method have been applied
to optimize process variables for different materials [26—28]. High Impact Polystyrene
(HIPS), in particular, has emerged as an adaptable thermoplastic with excellent impact
resistance, rigidity, and stability under stress [29, 30]. Its favourable thermoforming,
extrusion, and fused deposition modelling characteristics, combined with recyclabil-
ity and resistance to environmental factors, make it an attractive material for additive
manufacturing [31-35]. However, like many thermoplastics, HIPS still faces issues
such as porosity, weak interlayer bonding, and anisotropic strength, which necessitate
advanced modelling strategies to improve its structural performance [36—39]. Despite
numerous optimization studies, most existing approaches rely on conventional statis-
tics or regression models that often focus on single properties, leaving gaps in address-
ing multi-response objectives, such as printing time, surface roughness, dimensional
deviation, and mechanical reliability. In light of this, the present research proposes an
Adaptive Neuro-Fuzzy Inference System (ANFIS)-based predictive framework tailored
to FDM of High Impact Polystyrene (HIPS), with the dual aim of enhancing process
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optimization and contributing to the broader discourse on sustainable and efficient
material utilization.

In this methodology, key process inputs include nozzle temperature, printing speed,
and infill density, whereas output responses are measured in terms of surface roughness,
dimensional deviation, and printing time. Grey Relational Analysis (GRA) normalizes
and integrates multiple responses into one single Grey Relational Grade (GRG), which
is the target for modelling. The ANFIS model is thereby able to learn its internal nonlin-
ear relationship with the unrelated process parameters and combined performance out-
comes. So, the proposed approach not only fills the identified gap of limited intelligent
multi-response modelling in the case of FDM, but also provides a powerful predictive
tool for optimized process control, enhanced product reliability and overall efficiency of

additively manufactured components.

2 Materials and methods

The Snapmaker 2.0 is a modular construction system that caters to a whole range of
technical applications, considering the following three primary modalities, the most
paramount being additive manufacturing through 3D printing. Additive manufactur-
ing employs the Fused Deposition Modelling (FDM) method, one of the most widely
accepted techniques of adding material to create 3D objects via extrusion using ther-
moplastics, layer by layer. Given the majority of the forms of adoption, this acceptance
is overwhelmed either in the market of production or in that of consumption, owing
to its simplicity, cost-effective nature, and relative ease and convenience in the building
of even the most complex geometry. Among the vast range of thermoplastics and the
most commonly used FDM materials, HIPS or High Impact Polystyrene is an extremely
versatile and typical FDM material. It’s a tough polymer synthesized by polymeriza-
tion wherein styrene monomers are incorporated with additional poly-butadiene for its
improved toughness and impact resistance compared to general-purpose polystyrene. It
has a comparatively lower melting temperature, good processability, dimensional stabil-
ity, and excellent resistance to oils, greases, and a variety of chemicals, making it highly
suited to thermoforming, extrusion and fused deposition modelling.

HIPS is indeed a material that bears enormous application potential through various
industries, mainly due to its non-toxic character, simple workability, durability, impact
resistance, and cost-effectiveness. In food packaging, HIPS is used for trays, clamshell
containers, blister packs, and storage vessels. In consumer and industrial applications,
HIPS is considered an important material in toys, office supplies, electronic housings,
and home appliances, where rigidity and dimensional stability are paramount. In the
automotive sector, HIPS is also used because of its lightweight and easy processability
for instrument panels, trims, and external body parts. The construction industry uti-
lizes HIPS for ceiling tiles, insulation boards, and wall panels where thermal insulation
is needed. Its applications in medicine include pharmaceutical diagnostic trays, sample
cups, and packaging materials due to its resistance to chemicals and dimensional stabil-
ity. In the area of additive manufacturing, HIPS is extremely popular in Fused Deposi-
tion Modelling (FDM) as an inexpensive and easy-to-handle prototyping material, which
can lend itself to post-processing with many methods such as sanding, machining, and

painting; hence, it is perfect for functional and end-use components.
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Dimensional deviation and surface roughness of the fabricated FDM parts were mea-
sured using precision instruments, ensuring an objective basis for performance evalua-
tion. Dimensional deviation, parallelism error and perpendicularity error were assessed
by measurement of the actual printed dimensions using a Helmel make Coordinate
Measuring Machine (CMM) equipped with a touch-trigger probe, providing an accu-
racy of £2 pum and resolution of 0.5 pm. Surface quality, on the other hand, was assessed
using a Mitutoyo SJ210 surface roughness tester with a measurable range of 360 um with
a 0.01-pm resolution on various cut-off lengths from 0.25 mm to 2.5 mm. For a single
specimen, surface roughness was measured at different locations, and the average ‘Ra’
value was considered.

The configuration utilized for FDM is depicted in Fig. 2. Product and process designs
may be optimally optimized with the use of the Taguchi Design of Experiments (DOE)
approach. To determine how different inputs affect the final result, the Taguchi decision-
making process systematically manipulates the inputs at several stages. While taking the
possible influence of noise components into account, the main objective is to choose the
best combination of input elements that will reduce variation and improve performance.
Independent process factors in this study include nozzle temperature (NT), infill density
(ID) and printing speed (PS). Printing time, dimensional variation, surface roughness,
parallelism and perpendicularity error are the output parameters under consideration.

Fig. 2 FDM Setup for experimentation
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Among the most important FDM process parameters selected in the study-nozzle tem-
perature, print speed, and infill density-they formed the most consequential parameters
that improved the printing performance of the HIPS. The nozzle temperature con-
trols the melt flow, interlayer adhesion and surface finish; print speed governs deposi-
tion quality, dimensional accuracy, and printing time; while infill density determines
the mechanical properties and overall strength. In preliminary tests, these factors were
highly correlated with responses imparting greater justification for their selection.

The levels, ranges, and attributes are depicted in Table 1. Considering the parameters
and levels, an L27 orthogonal array has been chosen to perform the tests. For this work,
three input factors, nozzle temperature, printing speed, and infill density, were analyzed
at three different levels. An L27 orthogonal array was selected to cover all combinations
of factor levels extensively and to capture the interaction effects satisfactorily. The design
chosen, compared to smaller orthogonal arrays, made provisions for wider space for
interactions among factor levels while remaining within the safe operating limits of the
HIPS material, making the optimization results more reliable and robust.

2.1 Development of grey-based ANFIS predictive model

Over the past few years, artificial intelligence has greatly shaped the aspects of engi-
neering to allow for the development of modern models and methods for the optimi-
zation of many processes. Process control at its finest is essential to improve outcome

Table 1 Input and grey output parameters

Ex. No Input variables GRG
A B C
Nozzle Temp (°C) Infill Density (%) Printing Speed (mm/sec)

1 230 25 35 0.7690
2 230 25 50 0.6870
3 230 25 65 0.5729
4 230 50 35 0.7108
5 230 50 50 0.6686
6 230 50 65 0.7066
7 230 75 35 0.4542
8 230 75 50 0.5121
9 230 75 65 0.6273
10 235 25 35 0.7372
11 235 25 50 0.7000
12 235 25 65 0.7261
13 235 50 35 0.7138
14 235 50 50 0.6535
15 235 50 65 0.6688
16 235 75 35 04961
17 235 75 50 0.5928
18 235 75 65 0.6206
19 240 25 35 0.7908
20 240 25 50 0.7876
21 240 25 65 0.8066
22 240 50 35 0.7612
23 240 50 50 0.7740
24 240 50 65 0.7781
25 240 75 35 05721
26 240 75 50 0.6154
27 240 75 65 0.6018
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performance results. The exploration of the ANFIS model was made through the sup-
plied data, where the “trapmf” membership function generates rules from the three
selected input variables: nozzle temperature, infill density, and printing speed. These
rules will then aid in structuring the ANFIS prediction model, taking into consideration
all five output responses: surface roughness (SR), dimensional deviation (DD), parallel-
ism error (PRL), perpendicularity error (PERP), and printing time (PT). Let the model
predict the properties of parts printed through FDM under all three parameters as well.
Figure 3 depicts the ANFIS model editor, while Fig. 4 represents the rule viewer, along
with the underlying architecture and the predictions for all five output parameters. This
architecture makes comprehensive multi-response prediction possible and provides an
accurate means for process optimization of FDM components. The ANFIS model devel-
oped in this study follows a multi-input single-output (MISO) framework, which is the
structure of the ANFIS model. Specifically, the five Grey Relational Coefficient (GRC)
values derived from the measured output responses (surface roughness, dimensional
deviation, parallelism error, perpendicularity error, and printing time) were used as the
inputs, while the Grey Relational Grade (GRG) was considered as the single output.
Predictive modelling was accomplished using the Adaptive Neuro-Fuzzy Inference
System (ANFIS) for its ability to integrate the learning capacity of neural networks
with fuzzified reasoning. Taguchi experimental trial data were divided into training
and validation sets for the purpose of better generalization and less over-fitting. The
ANFIS model utilized a first-order Sugeno-type fuzzy inference system with ‘trapmf’
membership functions. In this scheme, three membership functions were allotted for
each input parameter (nozzle temperature, infill density, and printing speed), making
the rule base representative of nonlinear interactions thereof in the process variables.
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Hyperparameters were selected through an inner iterative testing process, while training
was performed on a hybrid optimization algorithm combining Least Squares Estimation
(LSE) for consequent parameters and Gradient Descent for premise parameters.

3 Result and discussion

The setup used in the present study for FDM printing of HIPS parts was examined by
utilizing an L27 orthogonal array (OA) to determine the effect of various input param-
eters. The primary objective of this study was to determine the impact of these charac-
teristics on the development of HIPS components. The major objective of the research
was to determine the best values for these parameters so that the FDM method might
be significantly more successful. Performance is improved when metrics such as Surface
Roughness (SR), Printing Time (PT), and Dimensional Deviation (DD) are measured
more precisely.

3.1 Optimization of factors on printing time (PT)

Figure 5 depicts the response plot for printing time (PT) for FDM of HIPS material. This
investigation establishes a transparent relationship between printing time (PT) and the
selected process variables of nozzle temperature (NT) and printing speed (PS). The rela-
tionship between PT versus NT shows that with the increase in the nozzle temperature,
improved flowability of the filament material is experienced. At high NT levels, the poly-
mer is softened and melted reasonably well to reduce viscosity, facilitating smooth extru-
sion through the nozzle. With this behavior, a higher deposition rate is encouraged, and
so is the layer formation speed, leading to a shorter overall print time. In a nutshell, with
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Fig. 5 Main effect plot for Printing Time

Table 2 Taguchi’s analysis for printing time (PT) - FDM of HIPS

Levels Means of PT

A B C
1 31.39 20.29 29.57
2 31.31 27.76 28.65
3 23.61 38.25 28.08
Delta 7.78 17.96 1.49
Rank 2 1 3

an increase in NT, extrusion velocity and material throughput are improved, thereby
directly contributing to a decrease in PT.

In a similar capacity, the relationship between PS and PT shows that increasing print-
ing speed greatly reduces the total time for part fabrication. Higher PS allows for the
movement of the nozzle across the build platform at higher speeds, thus allowing for
faster deposition of each layer and, consequently, less overall print time. At the same
time, it must be noted that while increased printing speeds are effective in decreasing
PT, they can also create negative consequences for part quality, dimensional accuracy,
and surface finish if such conditions are disregarded. Hence, the bias toward reduced
PT being a huge consideration toward the selection of any process parameter for a good
quality fabricated component will be a critical point.

Using the A3B1C3 arrangement of process variables is recommended to improve the
efficacy of PT. This trend is emphasized in Table 2 of the study findings given by Taguchi
analysis. The change in the “Nozzle Temperature (°C)” to 240 °C, the “Infill Density (%)”
to 25%, and the “Printing Speed” to 65 mm/s, as shown in Table 2, can improve perfor-
mance. While “Nozzle Temperature” and “Printing Speed” are also crucial, “Infill Den-
sity” is the most crucial with respect to the Printing Time (PT).
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Fig. 6 Main effect plot for Surface Roughness

Table 3 Taguchi’s analysis for surface Roughness — FDM of HIPS

Levels Means of SR

A B C
1 1.2886 23584 0.6001
2 1.0568 0.4864 1.1488
3 0.9787 04793 15752
Delta 0.3099 1.8792 0.9751
Rank 3 1 2

3.2 Optimization of factors on SR

Figure 6 illustrates the response plot for Surface Roughness (SR) attained during FDM
of HIPS. It can be seen that ‘SR’ has a positive correlation with nozzle temperature (NT)
and infill density (ID). It was also seen that increasing printing speeds (PS) raised the
values of ‘SR’ correspondingly. The correlation between the ‘SR’ and printing speed is
quite strong, indicating that ‘PS’ is a major contributor in determining surface finish
quality. As such, an increased ‘PS’ may lead to a rougher surface due to a lesser time
for adhesion of the layers and settling of the material. In addition, while printing with
higher values of ID, an increased amount of material is being deposited, which causes an
increase in surface irregularities. These irregularities together would increase the value
of ‘SR’ with major consideration towards the overall surface quality. Therefore, balancing
of ID, NT, and PS becomes important for minimizing the values of ‘SR’ and achieving a
higher quality surface finish in FDM of HIPS.

The A3B3C1 configuration of process variables is suggested for SR optimization.
Table 3 shows that this tendency is borne out by Taguchi’s study. As shown in Table 3,
the performance may be improved by adjusting the following parameters: “Nozzle Tem-
perature (°C)” (240 °C), “Infill Density (%)” (75%) and “Printing Speed” (35 mm/s). While
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“Nozzle Temperature” and “Printing Speed” are important variables, “Infill Density” is
the most crucial parameter in deciding the overall surface roughness.

3.3 Optimization of factors on dimensional deviation
The graph in Fig. 7 illustrates the analysis of the response to dimensional deviation for
FDM of HIPS components. Dimensional deviation declines with increases in nozzle
temperature (NT) and printing speed (PS), although higher levels of infill density (ID)
tend to amplify deviation values. The reduction in deviation at high ‘NT” and ‘PS’ can be
explained by increasing melt flow characteristics and the speed of deposition of material,
implying uniform layer formation and increased stability. However, when ‘NT’ is very
high at high ‘PS; molten polymer viscosity is less controlled, and the extrusion behavior
becomes difficult to control. Under high ‘N'T” into high ‘PS; material flow can’t be pre-
cisely regulated through the orifice, which leads to conditions such as over-extrusion,
irregular thickness of layers, and loss of geometric fidelity. In contrast, increasing ‘ID’
increases material deposition per unit volume of the part, thus increasing the propensity
for material expansion, accumulation of internal stresses, and thermally induced distor-
tion, all of which act collectively to contribute toward increased dimensional deviation.
The dimensional accuracy may be adversely affected by elevated internal tensions and
potential deformation as a consequence of using a high infill density and a higher nozzle
temperature. The combination of a higher infill density and increased velocity may exac-
erbate issues related to thermal expansion and vibrations, resulting in less precise prints.
To minimize DD, it is advisable to utilize the A3B1C3 configuration of process vari-
ables. Taguchi’s study findings, as seen in Table 4, reflect this tendency. In order to
enhance performance, it is possible to modify the settings “Nozzle Temperature (°C)”
(240 °C), “Infill Density (%)” (25%), and “Printing Speed” (65 mm/s) as shown in Table 4.

24 Nozzle Temperature

P& Infill Density
15.2 5 [ Printing Speed

15.0

Dimensional Deviation (mm)

2
Levels

Fig. 7 Main effect plot for Dimensional Deviation
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Table 4 Taguchi’s analysis for dimensional Deviation — FDM of HIPS

Levels Means of DD
A B C

1 14.95 14.83 14.96
2 14.93 14.92 14.93
3 14.92 15.05 14.92
Delta 0.03 0.23 0.04
Rank 3 1 2

a || 8

Parallelism Error
Perpendicularity Error

Fig. 8 a, b Main effect plot for Parallelism and Perpendicularity Error

The variable of paramount importance is “Infill Density”, with “Nozzle Temperature” and

“Printing Speed” being of similar value.

3.4 Optimization of factors on parallelism and perpendicularity error

The graph in Fig. 8a and b illustrates the analysis of the response to dimensional devia-
tion for FDM of HIPS components. The results show that parallelism error and perpen-
dicularity error decrease with an increase in nozzle temperature (NT) and an increase in
printing speed (PS). This improvement stems from better flow behavior and deposition
stability of the molten filament, where, at higher NT, reduced viscosity eases the uniform
extrusion and makes good bonding between layers. Thus, this explains why deposited
filaments are aligned to give better geometric accuracy in parallelism and perpendicular-
ity. Similarly, ‘PS’ shortens the residence time of heat at the build region, which limits
heat accumulation and distortion. This leads to more stable layer formation and better
conformity in dimensions to the design geometry.

Higher infill density (ID) has been shown, however, to aggravate both parallelism and
perpendicularity errors. Linearly scaled higher ‘ID’ leads to a greater volume of deposits
with molten material in a larger density per area, resulting in a higher probability of local
overfills and uneven distribution, which further complicate internal structure formation.
Solidification time also increases with greater material accumulation, i.e. longer cool-
ing times, residual thermal stresses, and localized warping. All these factors combine
nascently to weaken structural integrity, increasing parallelism, and separation. Con-
sequently, while optimizing ‘N'T” and ‘PS’ provides a geometric advantage, appropriate
control of the ‘ID’ is also necessary to reduce the accumulation of errors in the overall
geometric print fidelity.
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3.5 Inferences from evolved ANFIS predictive models

The GRA analysis for Fused Deposition Modelling (FDM) indicates the interaction of
printing time (PT) against other performance characteristics like surface roughness (SR),
dimensional deviation (DD), parallelism errors (PRL error), and perpendicularity errors
(PERP error). It further reveals from the response plot that maximum GRG is consis-
tently realizable with higher PT combined with intermediate or higher levels of the other
performance characteristics. For instance, maximum GRG occurs at an intermediate SR
level combined with higher PT (Fig. 9), and at similar levels for DD or PRL error at inter-
mediate levels combined with higher PT (Figs. 10 and 11). In Fig. 12, the highest GRG is
when the PERP error is at the intermediate level while the PT remains high, demonstrat-
ing that longer build times with controlled geometric deviation enhance overall process
performance.

Maximum GRG, however, will be obtained with this PT-induced phenomenon and
interaction with the other relevant factors. For instance, maximum GRG is achieved
when the SR exists at a higher level while the DD is at an intermediate level (Fig. 13).
Accordingly, solid dimensional stability can make up for poor surface quality. Maximum
GRG similarly produces a combination of higher SR in another dimension with higher
PRL or PERP errors (Figs. 14 and 15), implying prioritization for overall efficiency in the
process of printing despite geometric fidelity dropping. On the contrary, keeping DD
at an intermediate level still results in maximum GRG even when raised PRL or PERP
errors are considered (Figs. 16 and 17). This shows that, for multi-response optimiza-
tion, dimensional accuracy is more dominant than geometric alignment. Finally, Fig. 18
shows that GRG can achieve its maximum even when both PRL and PERP errors are
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Fig. 11 Surface graph for ANFIS-GRG Vs GRC of PT and PRL Error
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Fig. 12 Surface graph for ANFIS-GRG Vs GRC of PT and PERP Error
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Fig. 13 Surface graph for ANFIS-GRG Vs GRC of SR and DD



Manikandan et al. Discover Sustainability (2025) 6:1184 Page 16 of 22

I surface Viewer: 3D Printing HIPS ANFIS - m] X

File Edit View Options

Fig. 14 Surface graph for ANFIS-GRG Vs GRC of SR and PRL Error
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Fig. 15 Surface graph for ANFIS-GRG Vs GRC of SR and PERP Error
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Fig. 16 Surface graph for ANFIS-GRG Vs GRC of DD and PRL Error
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Fig. 17 Surface graph for ANFIS-GRG Vs GRC of DD and PERP Error
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Fig. 18 Surface graph for ANFIS-GRG Vs GRC of PRL and PERP Error

high, indicating that trade-offs in geometric precision are acceptable when compensated
by improved deposition stability and controlled build duration.

Also, it has been proven that slower builds with significant printing time give better
deposition uniformity, stronger interlayer adhesion, and reduced thermal instability,
leading to better overall performance. Unfortunately, this has always come at the expense
of greater surface roughness and geometric errors, such as the parallelism and perpen-
dicularity deviations. For the multi-objective optimization of FDM, the above selections
reflect a compromise in which longer printing time can be exploited to improve process
stability and dimensional control while allowing an acceptable level of geometric error to

maximize part quality and performance.

3.6 Comparative study on actual and predicted model

The central objective of this research was to establish an Adaptive Neuro-Fuzzy Infer-
ence System (ANFIS) model capable of accurately predicting the Grey Relational Grade
(GRG), which represents the aggregated performance index of multiple FDM output
responses. To validate the predictive ability of the developed model, the ANFIS-pre-
dicted GRG values were systematically compared with the experimentally obtained GRG
values.

The comparison, as illustrated in Table 5, reveals a strong alignment between the pre-
dicted and experimental data, thereby demonstrating the reliability of the model. The
close proximity of the results indicates that the ANFIS framework effectively captures
the complex nonlinear interdependencies between the process parameters (nozzle tem-
perature, infill density, and printing speed) and the multiple performance characteristics

Page 18 of 22
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Table 5 Comparison of GRG values

S.No Input Variables GRG ANFIS GRG
Nozzle Temp (°C) Infill Density (%) Printing Speed (mm/sec)
1 230 25 35 0.7690 0.769
2 230 25 50 0.6870 0.687
3 230 25 65 0.5729 0.573
4 230 50 35 0.7108 0.711
5 230 50 50 0.6686 0.669
6 230 50 65 0.7066 0.707
7 230 75 35 0.4542 0454
8 230 75 50 0.5121 0.512
9 230 75 65 0.6273 0.627
10 235 25 35 0.7372 0.737
11 235 25 50 0.7000 0.700
12 235 25 65 0.7261 0.726
13 235 50 35 0.7138 0.714
14 235 50 50 0.6535 0.653
15 235 50 65 0.6688 0.669
16 235 75 35 04961 0496
17 235 75 50 0.5928 0.593
18 235 75 65 0.6206 0.621
19 240 25 35 0.7908 0.791
20 240 25 50 0.7876 0.788
21 240 25 65 0.8066 0.807
22 240 50 35 0.7612 0.761
23 240 50 50 0.7740 0.774
24 240 50 65 0.7781 0.778
25 240 75 35 05721 0.572
26 240 75 50 0.6154 0.615
27 240 75 65 06018 0.602

(surface roughness, dimensional deviation, parallelism error, perpendicularity error, and
printing time). The high correlation between anticipated and actual outcomes confirms
that the ANFIS model can serve as a robust analytical tool for predictive modelling and
multi-response optimization in FDM of HIPS. This not only validates the model’s accu-
racy but also underscores its potential as a decision-support system for process control

and industrial implementation.

4 Conclusions

In order to create a prediction model for precisely determining the GRG, an exploratory
study was carried out using the Fused Deposition Modelling (FDM) process with HIPS
material. Using the collected data, advanced prediction algorithms like ANFIS were
developed to foresee when performance metrics will be required.

+ The study demonstrates that the ANFIS-based predictive framework can eftectively
model the complex nonlinear relationship between key FDM process parameters and
various performance responses (printing time, dimensional deviation, and surface
quality of HIPS material).

+ Among the process parameters, infill density, nozzle temperature, and printing
speed were identified as critical factors affecting the performance of HIPS parts
manufactured by FDM. Experimental results establish that these parameters greatly
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affect dimensional accuracy and surface quality, as well as the efficiency of the
production process.

Grey Relational Analysis successfully converted the multiple output responses
into a single value, the Grey Relational Grade (GRG), thus achieving concurrent
optimization of all performance measures. The GRG values were then effectively
employed for training and validating the ANFIS model.

The ANFIS model developed is seen to exhibit very high predictive accuracy,
capturing the complex interactions between the input parameters and providing
reliable predictions of the multi-response GRG. This confirms its potential use as a
robust decision support tool for process optimization in FDM.

The study identified the optimal parameter settings of 25% infill density, a nozzle
temperature of 240 °C, and a printing speed of 65 mm/s that best compromise
between printing time, dimensional accuracy, and surface quality.

The results show the real-world applicability of this methodology in improving
productivity, dimensional accuracy, and surface quality in FDM with HIPS.

From an industrial point of view, the presented methodology accords great practical
relevance. In the aerospace and automotive industries, it caters to the manufacturing
of lightweight, dimensionally accurate parts with almost no post-processing.

The consumer goods and packaging industries benefit from improved process
efficiency, while tooling and prototyping are enabled by rapid and economical
fabrication.

The predictive framework, therefore, gives an edge in terms of process control,
product reliability, and efficiency in additive manufacturing.
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5 Limitation and future scope

The study is limited to specific materials, process parameters, and dataset size; future
research should extend the methodology to diverse materials, larger datasets, and addi-
tional process variables to enhance generalizability and industrial relevance.
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