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Abstract

Breast cancer is a significant global health challenge, with highest rates of occurrence and mortality worldwide.
Early detection is important for the improvement of patient outcomes and the reduction of the overall burden of
the disease. Digital breast tomosynthesis (DBT) scans offer three-dimensional images of the breast tissue and is
becoming a valuable tool in the detection of breast abnormalities. However, accurately classifying DBT scans is
challenging due to the complexity of the anatomy of the breast and the presence of minor abnormalities. This
study introduces the MSAE-DL system for the multi-class classification of DBT scans. The system incorporates a
novel multi-head self-attention model with a unique ensemble classification model. Features were extracted from
the Mod_AlexNet Self-Attention model and fused with histogram of oriented gradients (HOG) descriptors.
Subsequently, feature vectors are reduced using three feature selection models. Finally, a novel ensemble clas-
sification model is introduced and fuses class and classifier weights for the final prediction using various
classifiers. The system demonstrates optimal performance in classifying DBT scans into normal, benign, and
malignant classes, achieving an accuracy of 90.13%, precision of 92.77%, and fl-score of 91.03%. The exper-
imental results underscore the potential of this approach in enhancing DBT classification into three different
classes, rather than simply binary classification.

Keywords Digital breast tomosynthesis - Classification - Ensemble classification - Self-attention

1 Introduction

The International Agency for Research on Cancer (IARC) released updated estimates of the worldwide cancer
incidence in 2020, indicating a rise of 19.3 million new cases and 10.0 million deaths [1]. Globally, one in five
individuals will have cancer at some point in their lives, and one in eight men and one in eleven women will pass
away from the disease. The most alarming finding from the updated IARC predictions is that, with 2.3 million
new instances of female breast cancer identified in 2020—more than the number of new cases of lung cancer for
the first time—breast cancer is now the most commonly diagnosed cancer globally. Currently, 11.7% of newly
diagnosed cases of cancer in both sexes are breast cancer cases [1]. Performing a clinical breast examination every
two years results in a 15% overall decline in breast cancer mortality, with a considerable reduction of almost 30%
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in mortality for women aged 50 and above [2]. This examination also considerably downstages breast cancer at
diagnosis [2]. Therefore, it is critical to utilize cutting-edge breast screening technologies for early detection and
diagnosis to lower mortality rates and end the worldwide burden of cancer. A significant advancement in breast
imaging technology, Digital Breast Tomosynthesis (DBT), provides a three-dimensional image of the breast
tissue. In contrast to conventional mammography, which produces a two-dimensional picture, DBT reconstructs a
number of high-resolution slices from many X-ray images taken from various angles [3]. The technology
addresses the concerns caused by overlapping breast tissues in traditional mammography, reducing false positives
and false negatives, and improving cancer diagnosis.

Breast cancer detection and classification using deep learning algorithms have shown promising results in
recent studies. The use of convolutional neural networks has enabled more accurate and efficient analysis of
mammograms and other medical images for the early detection of breast cancer. These algorithms can assist in
identifying patterns and anomalies that might not be visible to the human eye, leading to improved diagnostic
accuracy and potential early intervention. By leveraging the power of deep learning algorithms, specifically
convolutional networks, significant advancements have been made in the field of medical image analysis for
breast cancer detection and classification [4].

Computer-based detection technologies have become crucial for enhancing the interpretation of Digital Breast
Tomosynthesis imaging. DBT images provide three-dimensional details about the breast and automated detection
methods are valuable for identifying small abnormalities such as lumps or calcifications. To aid radiologists with
diagnosis, computer-aided diagnostic systems employ advanced algorithms leading to improved accuracy and
efficiency in recognizing potential abnormalities. Numerous CAD systems have been developed to detect breast
cancer in DBT scans. These systems face challenges such as the lack of multi-class classification data of DBT,
challenges in differentiating between benign and malignant tumours, and handling variations in breast density and
size that affect the precise classification by automated CAD systems. Most of the systems developed so far for
DBT scan classification have focused on simple binary categories. They either classify scans as benign or
malignant, cancerous versus non-cancerous (where non-cancerous includes both benign and normal cases), or
normal versus abnormal (where abnormal covers both benign and malignant cases). While these methods serve a
purpose, they fall short in addressing the more complex, but crucial, need for multi-class classification. By
lumping different conditions together, these systems miss the nuances that could significantly improve early
detection and diagnosis. Multi-class classification—separating benign, normal, and malignant scans—offers a
more accurate and meaningful approach, helping to improve patient outcomes.

One research focus is continuously enhancing image quality using cutting-edge methods to address artefact
reduction, contrast-to-noise ratio, and spatial resolution in DBT scans. Researchers like Gao et al., Gao, Fessler
and Chan, Su et al., Siti Noraini Sulaiman et al., Syafigah Aqgilah Saifudin et al., Mota, Mendes, and Matela
[5-10] have made significant contributions in this area of study. Reducing patient exposure while maintaining
diagnostic precision was the aim of researchers studying radiation dose optimization including Ajay Kumar
Visvkarma et al. [11], as demonstrated by their work. These investigations also thoroughly investigate the impact
of different acquisition conditions on the quality of images. Several studies have been conducted on the auto-
mated classification of tomosynthesis scans, with the majority of research focusing on binary classification.

Chen et al. (2024) [12] introduced Deep-AutoMO, a multi-objective neural network designed to classify
benign and malignant lesions in Digital Breast Tomosynthesis (DBT) images. The model combines two inno-
vative techniques: Multi-objective Immune Neural Architecture Search (MINAS) and Evidential Reasoning based
on Entropy (ERE). MINAS focuses on optimizing sensitivity and specificity during training by generating a set of
deep neural networks (DNNs) that blend ResNet and DenseNet blocks with pooling layers, using Bayesian
optimization to fine-tune their performance. This ensures a balance between sensitivity and specificity, addressing
the common challenge of class imbalance in DBT data. ERE, applied during testing, enhances the robustness of
the model by estimating prediction uncertainty and integrating outputs from multiple DNNs. This approach
ensures reliable and accurate predictions, even in noisy or out-of-distribution scenarios. Deep-AutoMO achieved
an accuracy of 85.57%, a specificity of 87.68%, and an AUC of 89.25%. Their work is limited by the use of a
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private dataset, which may affect the generalizability of the findings, and by focusing exclusively on binary
classification of benign and malignant cases, leaving normal cases unaddressed.

Shao et al. (2024) [13] explored the use of Al-based techniques to classify small breast masses (< 2 cm) using
digital mammography (DM), Digital Breast Tomosynthesis (DBT), and a combination of both (DM + DBT).
They developed two types of models: radiomics models, which rely on manually extracted image features, and
deep learning models, which automatically learn features from the data using a ResNet-34 architecture. The
combined DM + DBT models consistently delivered better performance compared to using DM or DBT alone,
with the deep learning DM + DBT model achieving the highest AUC of 0.908 on the internal dataset. External
validation further supported the benefits of combining DM and DBT, particularly for detecting small tumours.
The study demonstrated that deep learning outperformed radiomics in accuracy and robustness, highlighting the
potential of DBT to enhance breast cancer diagnosis. However, the work faced limitations, including a relatively
small dataset, manual segmentation of tumour regions, and a focus solely on binary classification of benign versus
malignant cases.

Oladimeji et al. (2024) [14] introduced an advanced framework called mutual information-based radiomic
feature selection (MIRFS), combined with SHAP explainability, to help classify Digital Breast Tomosynthesis
(DBT) scans into benign or malignant classes. Their study used a subset of the BCS-DBT dataset, focusing on 31
benign and 26 malignant cases, to test and validate the approach. By identifying the 15 most important radiomic
features using mutual information, the framework tackled challenges like feature redundancy and captured
complex patterns in the data, leading to improved accuracy. When applied with a Random Forest classifier, the
system achieved outstanding results of 92% accuracy, 93% precision, and a 92% F1-score, outperforming tra-
ditional methods like LASSO and RFE, as well as deep learning models. Their study has some limitations,
including the use of a relatively small dataset, the focus solely on binary classification without exploring multi-
class scenarios.

Farangis Sajadi Moghadam and Rashidi (2024) [15] developed a feature extraction model using the Discrete
Cosine-based Stockwell Transform (DCT-DOST), and radiomic features, to classify DBT images into benign or
malignant. Their approach involved pre-processing, segmentation, feature extraction, and classification. Synthetic
minority oversampling technique (SMOTE) was deployed for feature selection, while Random Forest (RF),
K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) were employed for the classification stage.
The best results were achieved by the RF classifier with an accuracy of 78.51%, and an AUC of 87.80%.
However, the focus of the study only on classification of DBT into benign or malignant limits its potential for
more important multi-class classification, and the relatively low accuracy highlights the need for further
improvement.

A SIFT-DBT model was introduced by Du et al. (2024) [16], this model combines self-supervised contrastive
learning and patch-level multiple instances learning to address class imbalance. Robust pairs from different slices
were formed to focus on structural and semantic information within the images. Their system classified images
into normal and abnormal and achieved an AUC of 92.69%, specificity of 84.15%, and sensitivity of 84.62%.
However, their focus on binary classification only limits their work. Additionally, while the AUC is high, the
specificity and sensitivity suggest that there is still room for performance improvement.

For benign versus malignant DBT classification, Mendes et al. (2023) [17] developed a model that was built
using a primary framework based on previous research by Muduli et al. (2021) [18]. The model integrated the
well-established data augmentation techniques with the developed CNN architecture that was optimized using the
Adam technique for the classification. Their model achieved an accuracy of 93.2%, and an Fl-score of 94%.
However, the emphasis of the model on binary classification (benign versus malignant) limits its ability for a
multi-class classification model that includes normal cases.

A graph convolutional neural network, to classify DBT scans into cancerous and non-cancerous, was proposed
by Bai et al. (2022) [19]. They utilized two datasets in this study, one of which is a private and the other is a
public dataset. The model merges spatial-based self-attention pooling graph convolution network and graph
representation (GCN). Their performance was then compared to that of baseline models such as 3D ResNet,
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ResNet-Vote, Two-stream, and Spatial ResNet. The model achieved an accuracy, sensitivity, and an F1-score of
84%, 84%, and 83%, respectively. However, the study is limited by a relatively low accuracy in binary
classification.

A study was conducted by Nogay, Akinci, and Yilmaz (2021) [20] for a binary and quadruple classification of
DBT scans. The study employed transfer learning techniques on five traditional pre-trained deep convolutional
neural network (DCNN) models: ResNet-18, AlexNet, GoogleNet, and ShuffleNet. New weights were assigned
to the newly developed layers in the five pre-trained DCNN models, while keeping weights of existing layers
unchanged. Accuracy rates ranged from 65 to 75% for binary classification, and from 66 to 86% for quadruple
classification.

In this paper, a fully automated system based on deep learning and a classification ensemble was studied. The
aim is to develop a multi-class DBT classification system that would be able to efficiently classify the DBT scans
into normal, benign, and malignant. The performance of the developed system was compared with the perfor-
mance of the state-of-the-art deep learning models. In this study, the BCS-DBT [21] public dataset was utilized,
and the results were compared with the outcomes of prior research utilizing the same dataset.

2 Methodology

In this study, we introduced MSAE-DL, an integrated comprehensive multi-head self-attention ensemble deep
learning system that combines feature fusion, selection, a multi-head self-attention model, and a novel classifi-
cation ensemble model. As illustrated in Fig. 1, the system processes DBT slices by first applying several
augmentation techniques, followed by image enhancement and colour mapping. One of the biggest challenges in
deep learning for medical imaging is ensuring the model does not overfit to a limited dataset. To address this, data
augmentation techniques were applied to artificially expand the training dataset, helping the model learn more
robust and generalizable features. This included random rotations, horizontal flipping, and contrast enhancements,
simulating real-world variations that can occur in DBT scans. Additionally, the images were enhanced using
histogram equalization and colour mapping techniques, improving contrast and highlighting subtle abnormalities
that might otherwise be missed. Subsequently, features are extracted using Mod_AlexNet [22], a previously
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Fig. 1 Diagram of the system developed in the work reported herein
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developed deep learning model that achieved outstanding results, consistently surpassing the performance of
other state-of-the-art models [22]. By integrating this high-performing model with our newly developed multi-
head attention model, we aim to significantly enhance classification, pushing the limits of what current deep
learning systems can achieve in DBT scans analysis. Moreover, HOG descriptors are also extracted from the
enhanced images. These feature vectors are then combined through concatenation. Following feature fusion, the
fused features undergo selection through three high-performing feature selection models to reduce the feature
vector by selecting the optimal features from each model. Finally, the selected features are fed into a novel
classification ensemble model that incorporates class and classifier weights in a maximum voting ensemble
approach to generate the final prediction. The developed multi-class classification system classifies DBT scans
into normal, benign, and malignant classes. In addition to data augmentation, other techniques deployed to
address overfitting, in the work reported in this paper, include: regularization, feature selection, ensemble
methods, and cross-validation.

The proposed system was evaluated on the BCS-DBT dataset [21] with the following performance metrics:
accuracy, sensitivity, precision, specificity, and fl-score. The key contributions of the work reported herein may
be outlined as follows:

e Develop a novel multi-class classification DBT classification system.

e Evaluate the impact of a multi-head self-attention model in the extraction of optimal features for better
discrimination between classes.

e Utilize high-performing feature selection models for feature reduction and removal of redundant features that
challenge the classification performance of DBT scans.

e Develop a novel classification ensemble model, to reduce overfitting and improve classification performance
compared to single classifiers.

e Evaluate the efficiency of the developed system utilizing a publicly accessible dataset and compare it with
prior research utilizing the BCS-DBT dataset and state-of-the-art deep learning models.

2.1 Multi-head self-attention model

The self-attention model is an attention model that weighs and connects different positions of input images before
making predictions. The primary goal of the attention model is to highlight the most relevant information while
ignoring redundant information about the input image [23]. Multi-head self-attention layers plays a vital role in
the image classification tasks, when integrated with deep learning models, due to their capacity to extract complex
links and contextual information from feature maps generated by the pooling layers. Multi-head self-attention
layers are able to extract discriminative features, thus resulting in enhanced classification performance. The
architecture of a multi-head attention module is provided in Fig. 2.

Several learnt parameters and mathematical operations operate the multi-head attention layers. After receiving
feature maps from the pooling layers, the attention layers use linear transformations to calculate query, key, and
value matrices—typically denoted as Q, K, and V, respectively [23]. The Q, K, and V are the foundational
matrices for the evaluation of the relative importance of features and are used to compute the attention scores
between pairs of features. The attention score «;; between features i and j is calculated as follows, in Eq. 1:

KT
a;; = soft max (Q\l/% > (1)

where Q; and K; represent the query and key vectors derived from features i and j, respectively, and dy is the
dimensionality of the key vectors [23]. The architecture of the developed attention model is presented in Fig. 3.
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This developed attention model was integrated with the previously developed Mod_AlexNet model [22].
Mod_AlexNet is an enhanced version of AlexNet developed in our prior research [22]. This model proved to
outperform traditional AlexNet and other deep learning models when employed on the BCS-DBT dataset,
especially in the classification of abnormal classes [22]. This model adds 6 layers to the original layers of
AlexNet, including 2 max-pooling layers, and 4 batch normalization layers. The max-pooling layers were added
to the first two convolutional layers, to enhance the extraction of more reliable and relevant features, especially
when focusing on low-level features in the earlier layers. This addition helps in identifying low-contrast features
and complex anatomical structures available in the DBT scans with varying sizes and locations. On the other
hand, the batch normalization layers were added to the first four convolution layers to reduce the internal

&\ Springer Neural Computing and Applications (2025) 37:15635-15659


https://doi.org/10.1007/s00521-025-11192-8

https://doi.org/10.1007/500521-025-11192-8 15641

covariant shift and improve the data flow between the intermediate layers. These layers enhance the ability of the
model to handle variations in intensity levels that are a challenge caused by varying tissue composition and X-ray
penetration.

The multi-head attention layers were connected to the 3rd, 4th, and 5th pooling layers of the Mod_AlexNet and
consist of 8 heads, 64 key and query channels, 256 value channels, and 256 output channels. To be able to extract
diverse and more discriminative features, 8 heads were included in this layer. To maintain the ability to capture
complex patterns while effectively computing the attention scores, 64 keys and query channels were assigned in
this layer. Standardizing parameter selection across self-attention layers reinforces flawless integration and
compatibility within network architecture. This results in enhanced computational efficiency, as well as feature
extraction process. Afterwards, the outputs of the three self-attention layers are concatenated to produce a
combined feature representation. This attention model was trained utilizing several optimizers and on different
batch sizes. The optimal performance was demonstrated on a batch size of 64 utilizing the SGDM optimizer.

To improve the stability of the model and ensure it generalizes well to new data, several regularization
techniques were incorporated to prevent overfitting. One of the key methods is the batch normalization layer,
which helps keep activations stable across different layers and mini-batches. This technique speeds up training by
reducing fluctuations in the learning process, making it easier for the model to converge efficiently while
maintaining accuracy. To further optimize training different learning strategies, including stochastic gradient
descent with momentum (SGDM), Adam, and RMSProp were tested. These optimizers adjust learning rates
dynamically, preventing the model from diverging during training. After evaluating their effectiveness, SGDM
was chosen as the final optimizer because it provided the best balance between stability and classification
accuracy. These techniques, previously introduced in our Mod_AlexNet development [22], are crucial in ensuring
that improvements in classification performance are attributed to the robustness of the model rather than over-
fitting to the training dataset. This approach strengthens the ability of the model to provide reliable and accurate
classifications for DBT scans.

The HOG descriptors break images down into small regions and calculate the direction of the pixel gradients
within each region. These gradient directions are then aggregated into histograms, which effectively capture local
edge orientations and patterns. In this study, HOG descriptors were extracted to capture fine-grained edge and
shape features in DBT scans. Features were extracted from the trained attention model and fused with the HOG
descriptors using the concatenation method to be input to the feature selection model. By combining precise edge
detection capabilities of HOG with the high-level abstract features extracted from the attention model, we
achieved a more comprehensive feature representation. This fusion significantly enhances the robustness and
accuracy of the classification task.

2.2 Feature selection

Following feature concatenation, high-performing feature selection techniques were deployed to reduce the risk
of overfitting in complex deep learning models, by minimizing the number of features input to the classifiers.
Feature selection techniques reduce the dimensionality of the feature vector and enhance the performance of the
classifier by retaining informative and relevant features and removing redundant and less informative features.
The feature selection stage ensures that classification improvements are due to the effectiveness of the algorithm
rather than an overfitted feature space. The three feature reduction strategies used were: minimum redundancy
maximum relevance (mRMR), Chi-squared, and f-tests.

Minimum redundancy maximum relevance (mRMR) is a feature selection technique that aims to carefully
select a subset of features that integrate high relevance features into the target class with low inter-feature
redundancy. Relevance scores are given to each feature based on its relationship with the target class [24]. Max-
relevance searches for features satisfying Eq. 2 [24].
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max D(S, ¢) Z X5 € (2)

€S

where S is the feature set, c is the sample class, and x; is the individual feature in the feature set S. The feature is
approximated using the mean value maxD(S, ¢) of mutual information between individual features x; and class ¢
[24]. Features selected based on max-relevance are likely to have a high level of redundancy, implying a high
degree of dependency among these features. When two features are strongly dependent on one another, removing
one of them has little impact on the discriminative ability of the other class. Minimum redundancy, shown in
Eq. 3, is deployed to remove the redundancy present between two features [24].

minR(S 2 Z (i, x7) (3)

X X €S
Features are ranked by concurrently minimizing the redundancy and maximizing relevance as shown in Eq. 4.
max ®(D,R),® =D —R (4)

Chi-squared is a feature selection model that is usually applied to categorical data. This technique determines
the degree of independence between each feature and the target class. The Chi-square statistics, also written as 2,
is calculated, as shown in Eq. 5, using the contingency table. The basic idea behind the Chi-square test, is to
evaluate whether the observed distribution of values of a feature significantly differs from the predicted distri-
bution under the null hypothesis of independence between the feature and target variable [25].

Ey)’

oy i

y

(5)

where Oj; indicates the observed frequency of feature value i in class j, and Ej; represents the predicted frequency
of feature i value in class j, as determined by the independence assumption. The summation is performed over all
feature values and class labels. The number of feature values and class labels determines the degree of freedom in
the Chi-square statistics.

Finally, the ANOVA (Analysis of Variance) F-test, is a statistical approach to determine the most relevant
features for the classification task by comparing several independent means. Features are ranked by calculating
the ratio of variances within and between groups [26]. The F-statistic, given in Eq. 6, is calculated as the ratio of
the variance between class means to the variance within each class.

MSB
= oW (6)
MSW

MSB represents the mean square between classes and computed as the variance of feature values across classes
weighted by the number of samples in each class. On the other hand, MSW represents the average variance of the
feature values within each class.

2.3 Ensemble model

In this study, a novel ensemble model was developed, as shown in Fig. 4, to improve the classification of
abnormal classes. The main contribution was the integration of class and classifier weights for making this model.
The stacking ensemble approach is utilized in this model, to combine the predictions of several base classifiers
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Fig. 4 Architecture of the developed ensemble model

while considering class weights to overcome the weaknesses of individual classifiers and improve the overall
predictions. The stacking ensemble model deployed a hierarchical architecture that integrated several classifiers to
generate predictions. Each classifier was trained on the same data subset. This diversity is important due to the
complex nature of abnormalities found in tomosynthesis scans. Each classifier produces predictions and is input
to the meta-classifier which combines them and produces the final prediction.

The integrated novel ensemble model aims to enhance the predictions by adding more accurate weights for
classifiers and classes. Specifically, the class weights address the class imbalance challenge that is faced using the
considered dataset. Given the unbalanced distribution of normal, benign, and malignant cases in the dataset,
adjusting the class weights assists in overcoming the imbalance by giving more weight to underrepresented
classes. This strategic change strengthens the discriminative ability of the classifier and guarantees an equal
impact for each class in the decision-making process. Class weights are calculated using the formula presented in
Eq. 7.

W= (7)

Ne * Ng;

w; represents the weight assigned to each class, with i indicating the specific class. The numerator n, represents
the total number of samples in the dataset, to provide a measure of the overall size of the dataset. On the other
hand, n. denotes the total number of unique classes within the target variable, illustrating the diversity of classes
present in the dataset. Finally, ng provides the total number of instances associated with the respective class i.
This formula adjusts the weights according to the frequency of each class compared to the whole dataset size. The
integration of class weights aims to enhance the sensitivity of the classification model to the individual features of
each class, by assigning higher weights to classes that have less instances and lower weights to classes with more
instances, resulting in a more balanced training and learning process.

Following the assignment of class weights for the prediction of each classifier, the predictions are input to the
meta-classifier that represents an advancement in the classification process. By fusing classifier predictions with
performance metrics such as specificity and the F1-score, this novel model builds a sophisticated framework for
generating weighted outcomes. The F1-score is a complete assessment of classifier performance that combines
precision and recall, whereas specificity assesses the ability to properly recognize true negatives. Considering
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these performance metrics into the integrated ensemble model improves the performance of the classification
model. This meta-classifier presents a new decision-making framework through the integration of performance
indicators and classifier predictions. In this study, several weighted predictions for each class from various
classifiers, including SVM, NB, DT, FDA, and KNN, using multiple feature selection techniques, utilize the
collective intelligence embedded in various prediction techniques. Finally, a maximum vote ensemble model is
implemented to combine the predictions generated by each base classifier and feature selection model, selecting
the class label with the most votes.

Figure 4 presents the developed integrated framework, where three feature selection models produce classifier
predictions, which are then weighted by a class weight model. Predictions are then refined by a meta-classifier by
assigning weights based on the f1-score and specificity of the classifier. The final prediction is achieved through a
maximum voting framework. This introduced framework offers advantages over traditional ensemble methods by
incorporating performance measures into the weighting system, leading to better decision-making. It provides
precise control over the weighting mechanism, resulting in more accurate and consistent predictions. The fol-
lowing section describes the dataset utilized, performance measures, system implementation, results, and dis-
cussion; giving a thorough overview of its deployment and outcomes.

3 Materials and methods

3.1 Dataset

Selecting the right dataset is crucial for deep learning in medical applications, especially when dealing with
complex models like CNNs. In this study, we used the Breast Cancer Screening-Digital Breast Tomosynthesis
(BCS-DBT) [21] public dataset which contains three-dimensional scans. The dataset was collected by Duke
University Hospital/Duke University in Durham, North Carolina, USA. The BCS-DBT dataset includes a total of
22,032 DBT scans collected from 5,060 patients. During a typical Digital Breast Tomosynthesis (DBT) exam-
ination, patients generally have two scans per breast, one from the top (craniocaudal or CC view) and one from
the side (mediolateral oblique or MLO view), totalling four scans. Since each scan can produce between 40 and
100 images, a patient might end up with anywhere from 160 to 400 images from the entire examination. The
dataset was made up using the evaluations that were performed between August 2014 and January 2018. The
dataset is classified into four categories: actionable (non-biopsied)—further imaging examination was recom-
mended, normal, benign, and malignant based on biopsy results. Only the normal, biopsy-proven benign, and
biopsy-proven malignant categories were taken into consideration for the purposes of this study. The BCS-DBT
dataset is the only publicly available resource specifically tailored for research on Digital Breast Tomosynthesis
(DBT) scans, making it an essential foundation for progress in this field. While obtaining large-scale annotated
medical datasets is always a challenge, BCS-DBT offers a diverse and clinically relevant set of cases, making it
an excellent choice for developing and evaluating breast cancer detection systems. Consequently, it has become
the primary dataset used in both existing and new studies for the classification and detection of abnormalities,
ensuring consistency and reliability in DBT research.

Table 1 provides a breakdown of the distribution of cases among the categories in the BCS-DBT dataset for the
training, testing, and validation sets. To be able to handle the large number of cases in the dataset, dataset size,

Table 1 Statistics of the

BCS-DBT dataset [21] Number of Patients Training Validation Testing Total
Normal 4109 200 300 4609
Actionable 178 40 60 278
Benign 62 20 30 112
Malignant 39 20 30 89
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and bias towards the normal cases, only cases for 600 patients were considered in this study. When increasing the
number of patients cases in the study, the class imbalance in the dataset increases and impacts the performance of
the deep learning models. This occurs because real-world datasets typically mirror the natural distribution of
conditions, with normal cases being far more common than benign or malignant cases. Consequently, adding new
cases, primarily from the majority class, disproportionately enhances its representation, leading to an imbalance in
the dataset. When training deep learning models, they may exhibit bias towards the majority class, in this case,
normal cases, resulting in a limited capacity to predict the minority classes—in this case, benign and malignant
cases. The disparity arises from the unequal distribution within the initial dataset, where 96% comprises normal
cases and only 4% includes both benign and malignant cases.

In this study, the number of patients in each class is as follows: 499 belong to the normal class, 62 to the benign
class, and 39 to the malignant class. When classifying DBT patients, the actionable group—group of individuals
who received follow-up imaging due to the identification of a mass or deformity in the study report, but chose not
to proceed with a biopsy, were excluded from the study. Due to the necessity of further imaging for evaluating
their status, establishing a dependable classification for this particular subgroup is unachievable.

To ensure the integrity and validity of our system, the entire case (all related scans) for each patient was
assigned to a single group—either training, validation, or testing. This approach prevents any overlap of scans
from the same patient across multiple groups, thereby preventing potential bias that could arise from correlated
images. To ensure that the system learns general patterns rather than patient-specific features, we keep scans from
the same patient in one group. In this study, we allocated 80% of the data for model training and cross-validation,
with this portion undergoing tenfold cross-validation. The remaining 20% of the data was set aside as a distinct
test set, completely excluded from both the training and cross-validation phases. The developed system was set up
using MATLAB R2023a. The implementation was performed using a 2.8 GHz Quad-Core, Intel Core i7, 16 GB
RAM, 1 TB Storage, and an Intel Iris Plus Graphics 655 (1536 MB).

3.2 Performance measures

The developed system classified DBT scans into normal, benign, and malignant. To examine the performance of
the developed system on the BCS-DBT dataset, several performance measures were considered, namely, accu-
racy, sensitivity, precision, specificity, and F1-score. Each measure was computed individually for every class,
and the final value was calculated using the weighted average technique. Eqs 1 — 5 provide each measure for a
single class.

While classifying, a TP (True Positive) refers to correct positive predictions, where real positive cases were
classified as positive. TN (True Negative) refers to correct negative predictions, where real negative cases were
classified as negative. FP (False Positive) refers to incorrect positive predictions, where real negative cases are
classified as positive. Finally, FN (False Negative) refers to incorrect negative predictions, where real positive
cases are classified as negative.

Accuracy, shown in Eq. 8, is the portion of the total samples that were correctly classified by the classifier.

TP +TN
TP +TN + FP + FN

(8)

Accuracy =

Sensitivity, shown in Eq. 9, refers to the percentage of real positives that are correctly classified.

TP

SensitiVity = m

©)

Precision, shown in Eq. 10, calculates the proportion of correct positive predictions among all predictions
identified as positive.
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TP
Precision = —— (10)
TP + FP

Specificity, shown in Eq. 11, measures the proportion of real negatives that are correctly classified.

TN

(11)

Finally, the Fl-score, shown in Eq. 12, is the combined average of precision and sensitivity to provide a
balanced metric.

2*Precision*Sensitivity
F1 - Score =

12
Precision + Sensitivity (12)

4 Results

The developed system was deployed to enhance the multi-class classification of DBT scans. The performance of
the developed system was evaluated and compared, with a specific highlight on accurately classifying the
abnormal class, which constitutes the minority class in the utilized dataset. The developed system integrates a
novel self-attention model with feature fusion and selection models, alongside a novel ensemble model, to
enhance classification performance. System performance was also compared to that of previous work that utilized
the same dataset.

Following the data augmentation process, the images were enhanced during the pre-processing stage. His-
togram equalization was utilized to adjust pixel intensities, thereby enhancing contrast and improving the visi-
bility of subtle features in the DBT images. To further refine the image quality and suppress unwanted artefacts,
Gaussian smoothing was applied as a noise reduction technique. Figure 5 provides examples of normal, benign,
and malignant cases, after these pre-processing methods were implemented.

Fig. 5 Samples of a Benign
cases b Malignant cases

¢ Normal cases, after pre-
processing

(a) (b) (©)
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To support the differentiation of tissue types within the scan, the HSV colour feature map was integrated after
pre-processing. This step leverages the unique properties of the HSV colour space, hue for dominant colours,
saturation for intensity, and brightness for lightness, ensuring that critical visual details are captured. The
enhanced colour information provided by the HSV feature map enriches the input data for the classification
model, improving its capacity to accurately identify and distinguish between normal, benign, and malignant
breast tissues. Figure 6 demonstrates the effectiveness of this approach by showcasing examples from each tissue
type post application of the feature map.

The initial stage of the system was the development and training of the introduced self-attention model. The
model was incorporated with Mod_AlexNet and trained utilizing the SGDM optimizer at a learning rate of
0.0001, 50 epochs, and a batch size of 64. The training and validation curves for loss and accuracy were plotted
for 50 epochs and are shown in Figs. 5 and 6.

Figure 7 illustrates the training and validation accuracy curves across 50 epochs. Starting with a modest
training accuracy of 45%, the curve increases rapidly, eventually stabilizing at a peak of 99%. Notably, the
training accuracy achieves a near-constant level of accuracy from the 20th epoch onward. On the other hand, the
validation accuracy commences at 65% and steadily climbs, culminating in a peak accuracy of 93%. Following
the 25th epoch, the validation accuracy also approaches a nearly steady state.

In Fig. 8, presenting the training and validation loss, the training loss initiated at 2.46 and steadily declined,
reaching a stable 0.004 by the 20th epoch, maintaining nearly this loss until the 50th epoch. Conversely, the
validation loss started at 2.16 and progressively decreased, achieving its minimum loss of 0.01 by the 20th epoch,
remaining relatively consistent thereafter until the 50th epoch.

Following the feature extraction from the trained attention model, the features extracted were fused with the
HOG descriptors. This fusion of features aimed to improve the generalization of the data, employing both the
learnt attention-based features and conventional HOG descriptors. Table 2 analyses the outcomes on several
performance measures from the attention model and the fusion stage.

As depicted in Table 2, classifying features extracted solely from the attention model demonstrated outstanding
performance across all metrics, achieving 90.99%, 91.98%, 51.99%, and 91.26% in terms of accuracy, precision,
specificity, and F1-score, respectively. When considering fusing these features with HOG descriptors and clas-
sifying them, the fused features achieve an accuracy of 90.89%, a precision of 93.55%, a specificity of 53.55%,
and an Fl-score of 91.40%. Precision, specificity, and fl-score show improvement when fusing the attention

Fig. 6 Samples of a Benign
cases b Malignant cases

¢ Normal cases, after the
colour mapping technique

(@) (b) ©
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Table 2 Performance

assessment of the imple-
mentation of attention and Accuracy % Sensitivity/Recall % Precision % Specificity % Fl-score %
fusion models

Model Performance Measure

Self-Attention 90.99 90.99 91.98 51.99 91.26
Fusion 90.89 90.89 93.55 53.55 91.40

features with HOG descriptors, contributing to improved performance and classification capability, particularly in
the abnormal classes.

The output of the feature fusion was further processed through three different feature selection methods:
mRMR, Chi-square test, and f-test. Each selected set of features was evaluated using several classifiers: NB,
SVM, DT, FDA, and KNN. The performance of each feature selection method with each classifier is presented in
Tables 3, 4, and 5. These results are compared with those obtained from features extracted by integrating a self-
attention model with Mod_ AlexNet.

Table 3 presents a comprehensive evaluation of several classifiers utilizing the mRMR feature selection model
in comparison to the baseline integrated self-attention Mod_AlexNet model. Using the mRMR feature selection
model, the accuracy ranges from 89.16% to 93.10%, with KNN exhibiting the highest accuracy at 93.10%, closely

Table 3 Performance eval-

. . Different integrated contexts  Classifier ~ Performance Measure
uation of employing the

mRMR feature selection Accuracy  Sensitivity ~ Precision  Specificity ~ Fl-score

model with various

classifiers SelfAttention_ModAlexNet 90.99% 90.99% 91.98% 51.99% 91.26% -

Feature Selection (MRMR) NB 89.16% 89.16% 91.03% 50.36% 89.94%

SVM 90.41% 90.41% 93.73% 55.07% 91.16%
DT 89.23% 89.23% 92.31% 57.15% 90.37%
FDA 92.99% 92.99% 92.82% 45.17% 92.54%
KNN 93.10% 93.10% 93.81% 53.88% 92.97%
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Table 4 Performance eval-
uation of employing the

Chi-square test feature Accuracy  Sensitivity Precision  Specificity Fl-score
selection model with vari-

Different integrated contexts Classifier Performance Measure

ous classifiers SelfAttention_ModAlexNet 90.99% 90.99% 91.98% 51.99% 91.26% -
NB 91.12% 91.12% 93.49% 53.19% 91.57%
SVM 90.44%  90.44% 93.66%  55.43% 91.18%
Feature Selection (Chi-square test) DT 89.23% 89.23% 9231%  57.15% 90.37%
FDA 92.77%  92.77% 9251%  47.09% 92.41%

KNN 91.39% 91.39% 93.41% 53.47% 91.77%

Table 5 Performance eval-

. . Different integrated contexts  Classifier =~ Performance Measure
uation of employing the

f-test feature selection Accuracy  Sensitivity ~ Precision  Specificity =~ Fl-score

model with various

classifiers SelfAttention_ModAlexNet 90.99% 90.99% 91.98% 51.99% 91.26% -
NB 88.62% 88.62% 90.87% 50.19% 89.56%
SVM 90.38% 90.38% 93.61% 54.40% 91.12%

Feature Selection (f-test) DT 88.39% 88.39% 92.87% 57.98% 90.02%

FDA 92.54% 92.54% 92.66% 48.10% 92.34%
KNN 93.55% 93.55% 93.87% 53.74% 93.31%

followed by FDA at 92.99%. On the other hand, the precision, which assesses the accuracy of positive predic-
tions, ranges from 91.03% to 93.81%, with KNN again achieving the highest precision at 93.81%, closely
followed by SVM at 93.73%. The specificity, an important measure that represents the proportion of actual
negatives correctly identified, ranged from 45.17% to 57.15%, with FDA achieving the lowest specificity. The
FDA demonstrated exceptional performance in accuracy, sensitivity, precision, and fl1-score. With an accuracy of
92.99% and a precision of 92.82%, FDA exhibits proficiency in accurately classifying both positive and negative
cases. On the other hand, the FDA achieves the lowest specificity of 45.17%, suggesting a higher rate of false
positives. The SVM performs competitively across most metrics, particularly excelling in precision with a value
of 93.73%. However, its accuracy at 90.41%, is slightly lower compared to KNN and FDA. The specificity
measured for SVM is 55.07%; it outperforms the specificity achieved by the baseline model. DT achieves an
accuracy of 89.23%, which is lower than the baseline model; it also achieves the highest specificity at 57.15%,
outperforming all classifiers and the baseline model. The higher specificity of DT indicates its ability to better
detect negative cases.

Table 4 provides an assessment of various classifiers utilizing the Chi-square test feature selection model and
compares their performance to the baseline integrated self-attention Mod_AlexNet model. FDA achieved the
highest accuracy at 92.77%, followed by KNN at 91.39% and NB at 91.12%. Moreover, in terms of precision,
SVM achieves the highest precision at 93.66%, followed by NB at 93.49% and KNN at 93.41%. This signifies the
proficiency of SVM in accurately classifying normal cases. Decision Tree (DT) emerges with the highest
specificity at 57.15%, outperforming other classifiers and the baseline model. This suggests the ability of DT to
better detect abnormal classes compared to other classifiers. Moreover, SVM achieves a 55.43% specificity,
second highest, while FDA demonstrates the least specificity at 47.09%.

Table 5 provides an analysis of the performance of various classifiers when employing the f-test feature
selection model. When classifying using the NB classifier, accuracy of 88.62% was achieved, which is somewhat
lower than that of SVM. Moreover, NB obtained a low specificity value among all classifiers (50.19%). The
SVM, on the other hand, exhibited a higher accuracy of 90.38% compared to NB. SVM recorded a precision of
93.61% and a specificity of 54.40%, which is the second highest precision and sensitivity among other classifiers
and outperforms the baseline model. Meanwhile, DT achieves an accuracy of 88.39%, comparable to NB and
lower than that achieved by the baseline model. However, it achieves a precision of 92.87% which is slightly
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higher than the baseline model. Moreover, DT records the highest specificity of 57.98% which outperforms the
other classifiers and the specificity of the baseline model. Although FDA outperformed the baseline model, NB,
SVM, and DT in terms of accuracy, precision, and Fl-score by achieving 92.54%, 92.66%, and 92.34%,
respectively, it achieved the lowest specificity of 48.10%. Finally, KNN emerges as the top performer with the
highest accuracy of 93.55%, indicating a significant improvement over the baseline and other classifiers. KNN
also demonstrates strong performance across other metrics, including sensitivity, precision, and f1-Score. KNN
achieved a specificity of 53.74% which is not the highest among other classifiers, but higher than the baseline
model.

After applying the feature selection models, the newly developed ensemble model is utilized. By intelligently
merging the strengths of various classifiers while addressing their individual limitations, we developed a powerful
voting stacking ensemble model. This ensemble model aims to achieve better predictions than any single
classifier by leveraging the collective knowledge of several classification models. The output from the meta-
classifier includes two predictions generated by each feature selection model: one based on the F1-score for each
classifier and the other based on the specificity measure. To arrive at the final prediction, the output of the meta-
classifier is processed through a maximum voting model, as shown in Table 6.

When analysing the results from Table 6, the ensemble model utilizing the mRMR feature selection shows
notable improvement, particularly in the F1-score, reaching 92.02%. This superior performance is driven by its
selection of features that maximize relevance while minimizing redundancy, thus enhancing predictive power.
Similarly, the Chi-square ensemble model achieved an F1-score of 91.58% by selecting features based on their
statistical significance, though its specificity of 53.10% suggests further room for improvement. The final
ensemble model demonstrated an accuracy of 90.13% and an improved specificity of 62.20%, attributable to its
integration of the multiple classifiers, which effectively reduced the misclassification rates.

Figure 9 shows the confusion matrices for the SelfAttention_ModAlexNet system (a) and the MSAE-DL
system (b), comparing their classification performance. The SelfAttention_ModAlexNet system correctly iden-
tified 729 benign cases, 527 malignant cases, and 34,681 normal cases. In comparison, the MSAE-DL system
slightly improved the detection of benign cases, increasing the number of correct classifications to 733, and it
significantly enhanced the detection of malignant cases, raising true positives from 527 to 744. However, this
improvement came with a slight drop in accuracy for normal cases, where correctly classified instances decreased
from 34,681 to 34,123. These results highlight the ability of the MSAE-DL system to better detect malignant
cases while balancing its performance across other classes.

The comparison between the SelfAttention_ModAlexNet and the final ensemble model MSAE-DL is presented
in Table 7. Initially, SelfAttention_ModAlexNet exhibits a slightly higher accuracy of 90.99% compared to the
MSAE-DL system accuracy of 90.13%. However, the MSAE-DL system outperforms the SelfAtten-
tion_ModAlexNet, achieving a precision of 92.77% compared to the precision of the SelfAttention_ModAlexNet

Table 6 Performance evaluation of the developed ensemble model

Different integrated contexts Performance Measure
Accuracy Sensitivity/Recall Precision Specificity Fl-score -
SelfAttention_ModAlexNet 90.99% 90.99% 91.98% 51.99% 91.26% -
Ensemble for MRMR F1 91.76% 91.76% 93.31% 53.42% 92.02%
Specificity 91.30% 91.30% 93.15% 53.97% 91.72%
Ensemble for Chi-square F1 91.12% 91.12% 93.35% 53.10% 91.58%
Specificity 91.07% 91.07% 93.39% 53.67% 91.57%
Ensemble for f-test F1 91.69% 91.69% 93.37% 53.42% 91.99%
Specificity 91.23% 91.23% 93.39% 53.52% 91.69%
Final Ensemble 90.13% 90.13% 92.77% 62.20% 91.03%
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Benign 729 69 377 Benign 733 4 438
Output  Malignant 147 527 1,382 Output  Malignant 331 744 1,879
Normal 1,040 545 34,681 Normal 852 393 34,123
Benign  Malignant  Normal Benign  Malignant  Normal
True Class True Class
(@ (b)

Fig. 9 a Confusion matrix for the SelfAttention_ModAlexNet system; b Confusion matrix for the MSAE-DL system

Table 7 Comparison of performance between SelfAttention_ModAlexNet and MSAE-DL

Different integrated contexts Performance Measure

Accuracy % Sensitivity/Recall % Precision % Specificity % Fl-score %
SelfAttention_ModAlexNet 90.99 90.99 91.98 51.99 91.26
MSAE-DL 90.13 90.13 92.77 62.20 91.03

which is 91.98%. This indicates that the MSAE-DL system is more effective at correctly classifying true positives
among those predicted as positive. The higher precision of the MSAE-DL system is attributed to its ability to
incorporate different feature selection models and the developed ensemble model that capture more discriminative
features, relevant to positive cases. Furthermore, the specificity measure demonstrates a considerable advantage
for the MSAE-DL system over the SelfAttention_ModAlexNet, with a specificity of 62.20% versus 51.99%. This
shows that the MSAE-DL system excels at correctly recognizing true negatives among the occurrences predicted
as negative, demonstrating better discrimination between positive and negative cases. The improved specificity of
the MSAE-DL system is attributed to its ability to efficiently classify abnormal classes. Furthermore, the
SelfAttention_ModAlexNet achieved a slightly higher Fl-score of 91.26% compared to 91.03% achieved by
MSAE-DL. In summary, while the SelfAttention_ModAlexNet achieved a slightly higher accuracy, the MSAE-
DL system has a significant advantage in precision and specificity. The increased specificity of MSAE-DL
indicates an improved ability to accurately classify abnormal classes. This demonstrates that the integration of the
developed SelfAttention_ModAlexNet with the selected feature selection models and the newly developed
ensemble model in the effectiveness of the MSAE-DL system in establishing the complex structure of feature
space, resulting in better discrimination between normal and abnormal classes.

Throughout our research, we utilized a consistent dataset for both training and testing phases to facilitate
accurate comparisons. To assess the performance of the MSAE-DL system relative to our previously developed
system [22, 27], we ensured that the training and testing sets were identical. Table 8 and Fig. 10 provide a
comparative analysis of the MSAE-DL system alongside the systems developed earlier. Mod_AlexNet [22]
achieved an accuracy of 91.61% and demonstrated a low specificity of 23.91% that indicates that a substantial

Table 8 Comparison of our

. O k Perf Meas
MSAE-DL system with our ur wor erformance Measure
previous work Accuracy %  Sensitivity/Recall %  Precision %  Specificity %  Fl-score %
Mod_AlexNet [22] 91.61 91.61 88.16 2391 89.57
Integrated System [27]  94.27 94.27 93.51 40.42 93.13
MSAE-DL 90.13 90.13 92.77 62.20 91.03
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number of abnormal cases are incorrectly classified as normal. The Integrated System [27], which incorporates
Mod_AlexNet for feature extraction fused with HOG descriptors and followed by mRMR feature selection,
yielded superior results with an accuracy of 94.27% and a specificity of 40.42%. The incorporation of the HOG
descriptors enhances the ability of the system to capture critical edge and shape information, improving the
discrimination. In comparison, the MSAE-DL system achieved an accuracy of 90.13%, which, while slightly
lower than that of the Integrated System, is accompanied by a notable specificity of 62.20%. This suggests that the
use of a multi-head self-attention model, integrated with the novel ensemble model, enhanced the feature
extraction and classification. The self-attention mechanism enabled the model to weigh different features
dynamically, emphasizing those that contribute more significantly to the classification model. Additionally, the
ensemble model integrated predictions from multiple classifiers, which further reduces the risk of misclassifi-
cations of abnormal cases. The results highlight that the MSAE-DL system demonstrates a notable improvement
in specificity, achieving 62.20% compared to 23.91% for the Mod_AlexNet system [22] and 40.42% for the
Integrated System [27]. This indicates that MSAE-DL is more effective at correctly identifying negative cases, a
critical aspect in reducing false positives. This suggests that the MSAE-DL system improved in correctly
identifying “Benign” and “Malignant” cases, leading to enhanced specificity. However, this advancement comes
with a slight increase in misclassification of “Normal” cases as either “Benign” or “Malignant”, likely because
the model focuses more on distinguishing subtle features in the minority classes.

Many studies have examined the classification of DBT scans using the BCS-DBT dataset, often integrating it
with some private dataset, which can lead to variability in results. Classification strategies vary including
distinctions between benign and malignant cases, normal versus abnormal (where “abnormal” includes both
benign and malignant), and cancerous versus non-cancerous (where “non-cancerous” encompasses benign and
normal cases). To ensure fair comparisons, multiple iterations of our MFSAE-DL system were conducted by
modifying the classification approach. Our system was tested in three previously mentioned configurations, and
the results are presented and compared with previous work in Tables 9, 10, and 11.

Table 9 shows that our system performed significantly better than the model by Nogay, Akinci, and Yilmaz
(2021) [20], achieving 90.13% accuracy compared to their 75.00% in the multi-class classification. This is largely
due to the more advanced design of our model, which uses a multi-head self-attention mechanism and an
ensemble classification approach. These features improved how well the system could extract important details
from the data and combine the strengths of different classifiers. In contrast, the model developed by Nogay et al.

Table 9 Results of multi-class classification for normal, benign, and malignant classes

Author/Year Accuracy Sensitivity/Recall Precision Specificity Fl-score

Our System (MSAE-DL) 90.13% 90.13% 92.77% 62.20% 91.03%
Nogay, Akinci, and Yilmaz, (2021) [20]
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Table 10 Results of classification for cancerous versus non-cancerous classes

Author/Year Accuracy % Sensitivity/Recall % Precision % Specificity % Fl-score % AUC
Our System (MSAE-DL) 93.81 94.01 99.60 87.20 96.72 0.91
Tardy and Mateus (2021) [28] 0.73
Nogay, Akinci, and Yilmaz, (2021) [20] 86.00

Bai et al. (2022) [19] 84.00 84.00 86.00 83.00

Adhikesaven et al. (2022) [29] 97.25

Bai et al. (2022) [30] 92.00 93.00 91.00 91.00 92.00

Table 11 Results of classification for normal versus abnormal

Author/Year Accuracy % Sensitivity/Recall % Precision % Specificity % Fl-score AUC
Our System (MSAE-DL) 94.53 95.83 98.20% 79.03 97.00% 0.87
Du et al. (2024) [16] 84.62 84.15 0.92

Fogleman, Otsap, and Cho (2021) [31] 94.90

relied on pre-trained networks with transfer learning, which may not have been as effective in handling the
complexities of DBT images, resulting in lower accuracy in multi-class classification.

In comparing the results for the classification of cancerous versus non-cancerous cases, in Table 10, various
systems demonstrate different strengths. Our system achieved high performance with an accuracy of 93.81%, a
sensitivity of 94.01%, a precision of 99.60%, a specificity of 87.20%, an F1-score of 96.72%, and an AUC of 0.91,
due to the use of a multi-head self-attention mechanism and ensemble classification. Tardy and Mateus (2021)
[28] reported an AUC of 0.73, but their model likely faced challenges due to the complexity of DBT images and
reliance on a private multi-vendor dataset. Nogay et al. (2021) [20] achieved 86.00% accuracy using pre-trained
DCNNSs, but their model lacked the advanced feature extraction methods of our system. Bai et al. (2022) [19]
reported an accuracy of 84.00% using graph convolutional networks, and their feature fusion Siamese network
[30] achieved 92.00% accuracy, 93.00% sensitivity, and 91.00% precision, due to its innovative comparison of
current and prior mammograms. Finally, Adhikesaven et al. (2022) [29] achieved the highest accuracy at 97.25%
with a CNN for early detection, though the lack of precision and specificity metrics makes direct comparison
challenging.

When comparing the results from Table 11, for the classification of normal versus abnormal cases, our system
demonstrated a high accuracy of 94.53%, with sensitivity at 95.83%, precision of 98.20%, specificity of 79.03%,
an F1-score of 97.00%, and an AUC of 0.87. In contrast, Du et al. (2024) [16] reported an accuracy of 84.62% and
a higher AUC of 0.92. Despite their use of a novel self-supervised initialization and fine-tuning method (SIFT-
DBT) for imbalanced data, the lower accuracy could be attributed to the difficulty of managing data imbalance
through their patch-level multi-instance learning approach. Similarly, Fogleman, Otsap, and Cho (2021) [31]
achieved a slightly higher accuracy of 94.90% with their system, which utilized transfer learning with a partial
Inception v3 architecture. However, their lack of reported metrics for specificity and precision limits the depth of
direct comparison with our system.

Only a few researchers have exclusively utilized the BCS-DBT subset only without the integration of a private
dataset. When comparing our work with studies that used only the BCS-DBT dataset, we utilized the same data
and adapted our MFSAE-DL system to match their classification models, ensuring fairness in our comparisons
and validations. The results are presented in Tables 12 and 13.
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Table. 12 ’Compan'son of Author/Year Accuracy %  Sensitivity/Recall %  Precision %  Specificity =~ Fl-score %
classification results for

benign versus malignant Our System (MSAE-DL)  91.09 92.74 88.49 89.73% 90.45
cases using the BCS-DBT 50, et al. 2022) 321 80.43

dataset only (Scenario 1)y o0 o al 2024) 3] 85.00 90.00 84.10 86.90

Table 13 Comparison of classification results for benign versus malignant cases using the BCS-DBT dataset only (Scenario

2)
Author/Year Accuracy% Sensitivity/Recall % Precision Specificity % F1-
score
Our System (MSAE-DL) 91.24 91.35 89.69% 91.14 90.40%
Farangis Sajadi Moghadam and Rashidi (2023) [34] 88.67 77.12 75.11
Farangis Sajadi Moghadam and Rashidi (2024) [15] 78.51 82.78 75.19
Flg.. 1 Perfonr}ance com- 100.00%
parison for benign versus 95.00%
malignant case classifica- 90.00%
tion using the BCS-DBT 85.00%
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&
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Performance Measures

When comparing the results from Table 12, as shown in Fig. 11, our system achieved an accuracy of 91.09%,
with a sensitivity of 92.74%, precision of 88.49%, specificity of 89.73%, and an Fl-score of 90.45%. These
metrics demonstrate that our model effectively classified benign and malignant cases, maintaining a strong
balance between sensitivity and specificity. In contrast, Hassan et al. (2022) [32] reported a lower accuracy of
80.43%, likely due to limitations in their deep learning-based radiomics approach combined with SVM classi-
fication. The performance of their model was possibly hindered by a smaller training dataset and the use of
traditional machine learning techniques like SVM, which may have restricted feature extraction. In their later
work, Hassan et al. (2024) [33] achieved a higher accuracy of 85.00%, along with a sensitivity of 90.00%,
precision of 84.10%, and an F1-score of 86.90%. This improvement was likely due to the introduction of image
quality-aware features and tumour texture descriptors, which enhanced the feature extraction capabilities of the
model. However, it still fell short compared to our system. Overall, our system outperformed both versions of
models developed by Hassan et al.

When comparing the results in Table 13, as shown in Fig. 12, our system demonstrated superior performance,
with an accuracy of 91.24%, sensitivity of 91.35%, precision of 89.69%, specificity of 91.14%, and an F1-score of
90.40%. These metrics highlight the effectiveness of our model, which leverages advanced feature extraction and
classification techniques to accurately distinguish between benign and malignant cases. In contrast, Farangis
Sajadi Moghadam and Rashidi (2023) [34] achieved a lower accuracy of 88.67%, with sensitivity at 77.12% and
specificity at 75.11%. Their approach, which employed radiomic-based feature extraction and Quadratic Dis-
criminant Analysis (QDA), was effective but fell short in terms of sensitivity and precision, likely due to
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Performance Measures

limitations in feature extraction and model selection, which may not have fully captured the complexity of DBT
images.

In their subsequent study (2024) [15], Farangis Sajadi Moghadam and Rashidi reported an even lower accuracy
of 78.51%, with sensitivity of 82.78% and specificity of 75.19%. Although they introduced a novel feature
extraction method based on DCT-DOST features, the performance of the model remained constrained. The
relatively lower precision and specificity suggest that the system may have overfitted the training data, partic-
ularly given the smaller sample sizes, which likely hindered its ability to generalize to new data. Overall, our
system outperformed both of their studies, especially in terms of accuracy, sensitivity, and specificity.

Despite the lower performance in specificity achieved by our developed MSAE-DL system, it is important to
understand this statistic within the framework of multi-class classification. Unlike the majority of prior research,
which focused mainly on binary classification scenarios, the MSAE-DL system is designed for multi-class
classification, as shown in Tables 8 and 9. The only comparable study is that of Nogay, Akinci, and Yilmaz [20],
as they also classified images into benign, malignant, and normal classes using the BCS-DBT dataset. However,
our system demonstrates superior performance compared to theirs, demonstrating its efficacy in this multi-class
classification task.

5 Discussion

DBT is a three-dimensional imaging technique which effectively reduces false positives and negatives caused by
overlapping breast tissue in traditional 2D mammography. Research data from clinical trials suggests that
computer-aided detection (CAD) systems have the potential to improve breast cancer detection and assist radi-
ologists in their diagnostic evaluations, thus improving overall diagnostic accuracy. In accordance with these
findings, a multi-diagnostic system is proposed, which integrates a customized self-attention deep learning
architecture with feature selection and a novel ensemble model.

In this study, images from the BCS-DBT dataset were augmented and enhanced followed by application of two
feature extraction models. Features were extracted using the SelfAttention_ModAlexNet developed in our work,
alongside HOG descriptors. These features were then fused using a concatenation technique. Subsequently, three
feature selection models were employed to identify the most relevant and informative features for enhancing
classifier performance. The resultant feature sets from the feature selection models were input into the novel
ensemble model. Finally, images were classified into three categories: normal, benign, and malignant.
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Experimental results indicate that while individual models may enhance performance, integrating all models
and constructing the entire system leads to superior performance compared to traditional CNN models and the
baseline model. In this study, a novel multi-head self-attention model was developed to enhance the performance
of the previously developed Mod_AlexNet [22], incorporating three multi-head self-attention layers to enhance
the feature extraction phase. Furthermore, an ensemble model was developed, integrating class and classifier
weights, and applying them to predict the outcome for each classifier using three deployed feature selection
models.

Various performance indicators were measured when comparing the performance of the MSAE-DL system
developed in our work. This system achieved an accuracy of 90.13%, a precision of 92.77%, a specificity of
62.20%, and an f1-score of 91.03%, surpassing our previously developed systems [22] [27] and other traditional
deep learning models and prior research in the multi-class classification of DBT scans.

Although the MSAE-DL system achieved high overall accuracy and precision, the relatively lower specificity
(62.20%) indicates that there is still room for improvement, particularly in classifying abnormal cases. Moreover,
another aspect to consider is slice selection during the processing of DBT scans. Selecting the most informative
slices is crucial to enhance classification performance of the system.

Thus, while this study introduces a highly effective multi-class classification system that outperforms existing
models, there are areas to address in future work. These include improving specificity and optimizing slice
selection.

6 Conclusion and future work

The focus on the classification of Digital Breast Tomosynthesis (DBT) by machines has been limited, in the
available literature to date, exposing a considerable need for comprehensive research. One of the main challenges
to progress in this field is a lack of publicly available datasets. Previous research has mostly focused on
developing binary classification systems by classifying the DBT scans into normal or abnormal, ignoring the need
for a more complicated classification model. Furthermore, most studies in this field have failed to investigate the
complexities of a multi-class classification system to classify the scans into normal, benign, and malignant. This
traditional and commonly used binary classification approach is considered overly simplistic, ignoring the
potential benefits of a more complex three-class classification approach. Implementing a three-class classification
system increases the accuracy and specificity of DBT scan diagnosis, providing radiologists with a useful medical
tool for better patient care.

Our study introduces an innovative multi-class classification system incorporating a self-attention deep
learning model, feature fusion and selection techniques, and a novel ensemble classification model. This system
effectively optimizes and combines features extracted from our developed SelfAttention_ModAlexNet model
with HOG descriptors. Subsequently, the fused features are input to three feature selection models, producing the
most relevant and informative feature sets. These sets are then fed into a developed ensemble model, which
integrates class and classifier weights, assigning them to predictions and classifiers for each feature selection
model.

The results demonstrate that our proposed system, MSAE-DL, outperforms both our previously developed
systems [22, 27] and prior research into multi-class classification systems using the BCS-DBT dataset. Various
performance metrics, including accuracy, sensitivity, precision, specificity, and fl-score, were assessed. Our
MSAE-DL system achieved an accuracy of 90.13%, a precision of 92.77%, a specificity of 62.20%, and an f1-
score of 91.03%, surpassing the performance of Nogay, Akinci, and Yilmaz [20], who achieved an accuracy of
75%. Notably, their study represents the only prior research utilizing the considered dataset to develop a multi-
class DBT classification system.

Although our work, reported in this paper, has made significant progress in multi-class classification of DBT
scans, it still faces some limitations. It is specifically designed for DBT imaging, and it does not incorporate
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multimodal radiological data, which may offer additional diagnostic insights. In future work, we envision several
enhancements of our proposed MSAE-DL system. Firstly, we plan to enhance the feature selection model to
extract more relevant and discriminative features. Furthermore, we aim to investigate the potential integration of
other deep learning architectures and techniques into our system to further boost the performance. Finally, we are
interested in expanding and augmenting the BCS-DBT dataset or acquiring additional datasets to enhance the
robustness of the training data of our system. This proposed future work will be explored to provide clinicians
with actionable insights and facilitate the integration of our system into real-world clinical workflows.
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