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Abstract

Background: Automatic detection of abnormal electroencephalogram (EEG) signals is
essential for supporting clinical screening and reducing human error in EEG interpreta-
tion. Although deep learning architectures such as CNN–LSTM have shown promising
performance in EEG classification, challenges related to feature variability, non-stationarity,
and sensitivity to pathological patterns remain. Our previous work with windowing-based
CNN-LSTM architecture achieved strong performance but it did not achieve sufficient
sensitivity for reliable clinical application. Methods: To overcome these limitations, we
propose an enhanced voting-based ensemble framework that combines five CNN-LSTM
base classifiers with a Random Forest (RF) meta-classifier, evaluated using 10-fold cross-
validation. Results: The proposed ensemble model achieved a sensitivity of 92.86%, a
specificity of 72.3%, and an overall accuracy of 83%, demonstrating competitive and clin-
ically meaningful sensitivity for abnormal EEG detection under the adopted evaluation
protocol. Conclusions: These findings demonstrate that integrating multi-model feature
extraction with an RF-based voting ensemble improves diagnostic reliability, reduces false
negatives, and supports early and accurate detection of brain disorders. This framework
not only surpasses existing approaches but also provides a flexible foundation for future
advancements in clinical decision support systems.

Keywords: EEG; abnormal EEG detection; CNN; LSTM; ensemble learning; Random Forest;
voting classifier; cross-validation; SVM

1. Introduction
1.1. Research Background

Electroencephalography (EEG) is a non-invasive neuroimaging technique that records
electrical activity of the brain and provides valuable insights into neurological and cognitive
processes. Despite its widespread clinical use, EEG signal interpretation remains challeng-
ing due to the non-stationary, noisy, and high-dimensional nature of the recorded signals [1].
Traditional signal processing and machine learning approaches often rely on handcrafted
features and struggle to efficiently capture complex spatiotemporal patterns inherent in
EEG data [2]. Recent advances in deep learning (DL) and artificial intelligence (AI) have
significantly improved automated EEG analysis by enabling hierarchical feature learning
and enhanced classification performance [3]. Convolutional Neural Networks (CNNs) [4],
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Recurrent Neural Networks (RNNs) [5], transformers [6], and hybrid architectures [7] have
demonstrated promising results across a wide range of EEG-based applications, including
epilepsy and seizure-related disorders [8,9], Alzheimer’s disease (AD) and mild cogni-
tive impairment (MCI) [10,11], Parkinson’s disease (PD) [12], schizophrenia [13], major
depressive disorder (MDD) [14], and autism spectrum disorder (ASD) [15]. CNN-based
models have been widely adopted for EEG analysis due to their ability to extract spatial
features from multi-channel recordings [16]. Schirrmeister et al. [17] demonstrated that
deep CNNs can outperform traditional methods in motor imagery classification, while
Lawhern et al. [18] introduced EEGNet, a compact CNN architecture designed for gener-
alizable EEG decoding across multiple brain–computer interface paradigms. To capture
temporal dependencies, RNN-based models particularly Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) networks have shown strong performance in modeling
sequential EEG dynamics [19]. Tsiouris et al. [20] developed an LSTM-based framework
for epileptic seizure prediction, achieving high sensitivity, while Ksibi et al. [21] employed
LSTM networks for classifying depressive and healthy EEG recordings. More recently,
hybrid CNN–RNN architectures have been proposed to jointly exploit spatial and tempo-
ral characteristics, such as CNN–GRU and bidirectional RNN-based models for emotion
recognition and Parkinson’s disease detection [19,22]. Transformers, originally developed
for natural language processing, have also been adapted for EEG analysis due to their
self-attention mechanisms, which enable efficient modeling of long-range temporal de-
pendencies. Dai et al. [23] introduced a transformer-based architecture for sleep stage
classification, demonstrating improved performance over conventional RNNs. In parallel,
hybrid architectures combining CNNs, RNNs, and attention mechanisms have reported
encouraging results in epilepsy detection, AD diagnosis, and PD classification tasks [24–26].

1.2. Research Motivation

Despite these advances, several challenges continue to limit the practical deployment
of deep learning models for clinical EEG analysis. EEG recordings exhibit substantial
inter-subject variability, heterogeneous pathological patterns, and sensitivity to recording
conditions, particularly in large-scale real-world datasets. These factors often hinder model
generalization and reduce robustness when transitioning from controlled experimental
settings to clinical environments. In clinical EEG screening applications, sensitivity is a
critical performance metric, as missed abnormal EEG recordings (false negatives) may
delay diagnosis or intervention. Although many deep learning models achieve competitive
overall accuracy, they may still exhibit suboptimal sensitivity when applied to heteroge-
neous clinical datasets. In our previous work, a windowing-based CNN–LSTM framework
demonstrated strong classification performance; however, its sensitivity was insufficient for
reliable abnormal EEG screening, highlighting the need for further improvement. Another
limitation of many existing approaches is their reliance on a single feature representation or
model architecture. Different temporal processing and downsampling strategies emphasize
different characteristics of EEG signals, leading to complementary sensitivity–specificity
trade-offs. Leveraging this diversity through ensemble learning provides a promising
avenue for improving robustness and reducing missed abnormal cases without introducing
excessive architectural complexity.

1.3. Research Objectives

Motivated by these challenges, the objective of this study is to develop a sensitivity-
oriented ensemble framework for abnormal EEG detection that enhances robustness and
reduces false negatives in clinical screening scenarios. Specifically, this work aims to:
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• Employ multiple complementary temporal feature extraction strategies to generate
diverse EEG representations while maintaining computational efficiency.

• Evaluate the performance of individual CNN–LSTM models trained on these comple-
mentary feature sets and analyze their sensitivity–specificity trade-offs.

• Integrate the outputs of the base CNN–LSTM models using a Random Forest–based
voting ensemble to improve overall reliability and sensitivity; and assess the proposed
framework on a large-scale, heterogeneous clinical EEG dataset using a consistent
preprocessing and evaluation protocol.

Through these objectives, this study seeks to demonstrate that ensemble learning can
effectively enhance abnormal EEG screening performance by combining complementary
model behaviors within a unified and interpretable framework.

2. Methods
The presented framework shown in Figure 1 illustrates the methodological framework

adopted for abnormal EEG detection using electroencephalogram (EEG) signals. Initially,
raw EEG data are acquired and subjected to a feature selection process, wherein the most
discriminative features are identified. Subsequently, a multi-model feature extraction
strategy, comprising five complementary approaches, is employed to capture diverse
signal characteristics. These extracted features are then processed by a deep learning
model, designed to enhance classification performance. To further improve robustness and
reliability, a voting system integrates the outputs from different models, thereby reducing
bias and variance. The outcome of the framework is the classification of EEG signals
into two categories: Normal or Abnormal, enabling accurate and efficient detection of
brain disorders.

Figure 1. Framework for Abnormal EEG Detection Based on Multi-Model Feature Extraction and
Voting Ensemble Learning.

2.1. Data Preprocessing

The Temple University Hospital (TUH) EEG Corpus is the largest publicly accessible
clinical EEG database in the world is, including more than 30,000 EEG recordings from
more than 14,000 patients collected since 2002. An excellent resource for neurological
research and machine learning applications, this large dataset spans a wide range of
patient ages, diagnoses, electrode configurations, and sampling rates [27]. About 2500 new
sessions are added to the corpus per year, and it is still growing. By offering highly
annotated, real-world EEG data that represents the heterogeneity inherent in clinical
situations, its size and clinical diversity make it possible to construct reliable automated
EEG interpretation systems, especially for seizure detection and other brain illnesses.
Because of this, the TUH EEG Corpus is a vital resource for developing data-driven
neuroscience and enhancing diagnostic tools [27]. All EEG recordings were band-pass
filtered to remove baseline drift and high-frequency noise, and notch filtering was applied to
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suppress power-line interference. Signals were normalized on a per-channel basis to reduce
inter-subject amplitude variability, and a consistent channel configuration and referencing
scheme were maintained across all recordings. Table 1 summarizes the distribution of
normal and abnormal EEG recordings across the training and testing sets, along with their
corresponding gender proportions. The dataset is balanced in terms of class representation,
with comparable male-female ratios across both splits, ensuring unbiased model evaluation.

Table 1. Distribution of Normal and Abnormal Cases in Training and Testing Datasets by Gender [28].

Training Testing

Normal Abnormal Normal Abnormal

1150 1150 126 148
49.4% Male 43.9% Male 50% Male 43.2% Male

50.6% Female 56.1% Female 50% Female 56.8% Female

2.2. EEG Windowing Technique

In this study, the EEG data windowing process builds upon our previously proposed
time–frequency analysis method based on Continuous Wavelet Transform (CWT) using
Generalized Morse Wavelets (GMWs) [28]. GMWs are analytic wavelets well-suited for
analyzing non-stationary signals with time-varying amplitude and frequency, such as
EEG, due to their excellent time-frequency localization and minimal interference artifacts.
Specifically, we set the wavelet parameters to γ = 3 and a time-bandwidth product of
60, balancing spectral resolution and computational efficiency to optimally capture EEG
oscillatory behavior.

The CWT is applied independently to each electrode signal to generate magnitude
scalograms, where signal energy is distributed across time–frequency representations.
Importantly, this analysis is performed in a fully data-driven and label-agnostic manner,
without using class information (normal or abnormal) at any stage of the window selection
process. For each EEG recording, time instants corresponding to maximum wavelet energy
are identified across electrodes, and a patient-specific average event time is computed after
excluding outliers beyond three standard deviations. A temporal window centered around
this average time is then selected for each recording. The same windowing criterion is ap-
plied uniformly to both normal and abnormal EEG recordings, ensuring a fair and unbiased
comparison between classes. In this study, a fixed window length of 16,000 samples was
used for all recordings, centered on the patient-specific average event time. This window
length was chosen to capture a sufficiently long EEG segment containing informative signal
dynamics while maintaining computational tractability. By focusing on this consistently
defined temporal segment, the proposed windowing strategy reduces data dimensionality
and suppresses irrelevant signal portions, enabling subsequent feature extraction and
classification stages to operate on the most informative EEG segments without introducing
label-dependent selection bias.

2.3. Multi-Feature Selection Block

EEG signals are characterized by high temporal resolution and complex non-stationary
dynamics, making feature extraction a critical step in optimizing detection performance for
brain disorders. To address this challenge, we propose an ensemble-based multi-resolution
feature extraction framework that systematically reduces the original EEG signal length
from 16,000 samples to 8000 samples while preserving diagnostically relevant information.
This reduction is achieved through five distinct down sampling techniques, each designed
to capture complementary aspects of neural activity. The techniques are as follows:
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2.3.1. Averaging (Mean Pooling)

This method computes the arithmetic mean of adjacent samples within a sliding win-
dow, effectively smoothing high-frequency noise and baseline fluctuations while preserving
the overall signal morphology. Averaging is widely used in EEG preprocessing to enhance
the signal-to-noise ratio (SNR) by suppressing random artifacts without distorting under-
lying neural oscillations [29]. By reducing stochastic variability, this technique improves
the robustness of subsequent machine learning models to intersession and inter-subject
variability [30].

Given an EEG signal segment X = [X1, X2, . . ., XN], where N = 16,000, we apply
non-overlapping sliding windows of size k = 2 and compute the mean of each pair:

Xavg[i] = (X2i−1 + X2i)/2 i = 1, 2, . . ., N/2 (1)

This approach effectively smooths high-frequency noise such as muscle artifacts and
amplifier interference while preserving important low-frequency trends like delta and theta
oscillations. It functions equivalently to a moving-average finite impulse response (FIR)
filter with a boxcar kernel [31].

2.3.2. Max-Pooling

Max-pooling retains the highest amplitude value within each segment, thereby em-
phasizing transient events such as epileptic spikes, sharp waves, and other pathological
discharges. This technique is particularly justified by prior studies in seizure detection,
which have shown that max-pooling enhances the visibility of these high-amplitude tran-
sient events that are often clinically significant. By preserving abrupt changes in neural
activity during down sampling, max-pooling ensures that critical features necessary for
detecting disorders like epilepsy are effectively maintained [32,33].

Xmax[i] = max (X2i−1, X2i) i = 1, 2, . . ., N/2 (2)

Max-pooling emphasizes peak amplitudes, which is crucial for detecting epileptiform
spikes, while also reducing sensitivity to baseline drifts.

2.3.3. Min-Pooling

Conversely, Min-pooling extracts the lowest amplitude value within each window,
effectively capturing inhibitory phases, suppression bursts, and troughs in oscillatory activ-
ity. This approach is particularly useful for representing deep brain states characterized by
cortical silencing, such as burst-suppression patterns observed during anesthesia or coma.
Although direct references to min-pooling in EEG analysis are limited, related pooling and
down sampling methods have been shown to preserve critical signal components associ-
ated with inhibitory neural dynamics and low-amplitude events [34]. By complementing
max-pooling, min-pooling ensures that both excitatory and inhibitory neural dynamics
are preserved within the feature set, providing a more comprehensive representation of
brain activity.

Xmin[i] = min(X2i−1, X2i) i = 1, 2, . . ., N/2 (3)

2.3.4. Even Decimation

Even decimation subsamples the EEG signal by selecting every even-indexed sample,
effectively reducing the temporal resolution by half while maintaining a sparse yet evenly
distributed representation of the data. This approach is justified by its ability to signifi-
cantly reduce computational overhead without substantial loss of diagnostic information,
especially in scenarios where high-frequency details are less critical. Consequently, even
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decimation offers a computationally efficient technique that is particularly advantageous
for real-time processing applications requiring faster data handling and analysis [35].

Xeven[i] = X2i i = 1, 2, . . ., N/2 (4)

2.3.5. Odd Decimation

Similarly, odd decimation retains every odd-indexed sample, producing an alter-
native subsampled version of the original EEG signal. This approach, when combined
with even decimation, helps mitigate the risk of losing temporally localized features that
may occur exclusively at either even or odd sampling points. By preserving this redun-
dancy, the method enhances feature retention and provides two slightly different yet struc-
turally similar representations of the same signal, which can improve model generalization
and robustness [36].

Xodd[i] = X2i−1 i = 1, 2, . . ., N/2 (5)

2.4. Feature Extraction and Classification

The proposed framework employs a hybrid CNN–LSTM architecture to jointly capture
the spatial and temporal characteristics of EEG signals. The CNN–LSTM configuration
follows the same design reported in our previous work published in MDPI AI [28], ensuring
architectural consistency and enabling fair comparison across studies. Briefly, the model
consists of two 1D convolutional layers using five filters of size 50, followed by two
stacked LSTM layers with 100 and 120 hidden units, respectively. The CNN component
processes the down sampled multi-resolution EEG segments to extract localized spatial
features, such as spectral and morphological patterns, using ReLU activations and pooling
operations to reduce dimensionality while preserving discriminative information. The
resulting feature maps are reshaped into sequential representations and passed to the
LSTM component, which models long-range temporal dependencies via gated memory
mechanisms, supporting the analysis of non-stationary EEG dynamics.

For training, the network is optimized using Adam with a learning rate of 1 × 10−4,
L2 regularization of 0.001, and a gradient threshold of 1, over a maximum of 30 epochs. The
input to the network comprises 19 EEG channels, and the final LSTM output is fed to a fully
connected layer with SoftMax activation to produce probabilistic predictions for normal vs.
abnormal EEG classification. Previous studies have shown that CNN–LSTM models can
provide improved generalization compared to standalone CNN or LSTM architectures in
EEG classification tasks [37,38]. Full architectural and training details are provided in [28].

2.5. Random Forest Voting Ensemble

In this study, a Random Forest (RF) voting ensemble is employed to aggregate classifi-
cation outputs from multiple CNN-LSTM models, enhancing the robustness and accuracy
of abnormal EEG detection. Random Forest, an ensemble of decision trees, is well-suited
for EEG signal classification due to its ability to handle high-dimensional, noisy, and
non-stationary data while resisting overfitting and balancing classification errors across
imbalanced datasets [39]. By using a voting mechanism over probabilistic outputs from
diverse base classifiers, the RF ensemble effectively fuses complementary information,
improving generalization and mitigating individual model biases. Prior research has
demonstrated the efficacy of RF-based ensemble methods in various EEG classification
tasks, including seizure detection and emotion recognition, achieving superior performance
compared to single classifiers and other ensemble strategies [40,41]. Moreover, RF’s in-
herent feature importance measures provide interpretability, which is valuable for clinical
applications. The integration of RF voting in this framework thus leverages its strengths in
ensemble learning to deliver reliable and accurate EEG classification outcomes.
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3. Performance and Evaluation
All simulations are carried out using MATLAB (version 9.12.0.1884302 (R2022a), Math-

Works, Natick, MA, USA), running on an Intel I core™ i7-8700 CPU @3.20 GHz with 128 GB
of RAM (Intel Corporation, Santa Clara, CA, USA). The data is originally sampled at a
frequency of 250 Hz [28]. Figure 2 presents the architecture of the proposed EEG classifica-
tion framework. Initially, raw EEG signals are segmented using a windowing technique,
where an optimized window size of 16,000 samples is employed to retain the most dis-
criminative features. Subsequently, five distinct feature extraction strategies namely even
decimation, max pooling, min pooling, average pooling, and odd decimation are applied to
the segmented signals in order to capture complementary aspects of the underlying neural
dynamics. Each feature set is then independently processed by the proposed CNN-LSTM
deep learning model, which leverages convolutional layers to extract spatial patterns and
recurrent layers to model temporal dependencies. The CNN layers employ 1D convolu-
tions to extract localized spatial features (e.g., transient spikes, spectral shifts), followed by
ReLU activation and max pooling to further condense the representation. The LSTM then
models temporal dynamics, with gated memory cells capturing long-range dependencies
critical for detecting non-stationary events like seizures. The five sub-models generate
independent outputs, fed to a Random Forest (RF) ensemble of randomized decision trees
with weighted voting. To prevent information leakage, the meta-classifiers are trained
using out-of-fold predictions generated by the base CNN–LSTM models during a 10-fold
cross-validation procedure. Specifically, the dataset is partitioned into ten stratified folds;
in each iteration, nine folds are used to train the base CNN–LSTM models, while the
remaining fold is used to generate validation predictions. These out-of-fold predictions are
then aggregated and used as input features to train the Random Forest (RF) meta-classifier.
This process is repeated until each fold has served as the validation set once, ensuring that
predictions used for training the RF are obtained from data unseen by the base models.
The RF ensemble is subsequently evaluated within the same cross-validation framework,
providing a robust decision mechanism that balances sensitivity and specificity. The final
output of the framework is a binary classification distinguishing between normal and
abnormal EEG patterns.

 

Figure 2. Proposed EEG classification framework. Five models (Max-CNN-LSTM, Min-CNN-
LSTM, Avg-CNN-LSTM, Odd-CNN-LSTM, and Even-CNN-LSTM) are derived from different feature
extraction strategies, and their outputs are combined through a Random Forest voting ensemble to
classify EEG signals as normal or abnormal.

Importantly, the proposed integration of multiple complementary feature-extraction
strategies with a hybrid CNN–LSTM architecture and ensemble learning represents a
sensitivity-oriented framework for improving the accuracy and reliability of abnormal
EEG detection. The TUH dataset [27] is used to assess the performance of the proposed
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model. A total of 2574 patient records were utilized, with 2400 allocated for training and
274 reserved for testing.

3.1. Ablation Study and Ensemble Framework for EEG Classification

An ablation study was conducted to systematically evaluate five distinct feature
extraction approaches applied to adjacent EEG samples. The study compared models em-
ploying: (1) average pooling (mean of adjacent samples), (2) max pooling (maximum value),
(3) min pooling (minimum value), (4) odd decimation (odd-indexed samples), and (5) even
decimation (even-indexed samples). Each method reduced the input dimensionality from
16,000 to 8000 points per epoch while preserving different signal characteristics. The com-
prehensive evaluation assessed performance across multiple clinically relevant metrics,
including overall accuracy, F1-score, and individual precision/recall rates. When evaluated
independently, these techniques demonstrated complementary performance profiles: max
pooling achieved superior sensitivity for detecting transient pathological events like epilep-
tic spikes but suffered from reduced specificity, while min pooling showed the inverse
pattern. Average pooling provided more balanced performance but with less distinctive
feature separation.

To overcome the limitations of the five individual feature selection approaches, we
evaluated their performance by applying three distinct voting system techniques for clas-
sification. Support Vector Machine (SVM) was examined known for its optimal margin
separation, Linear Regression for capturing linear trends, and Random Forest (RF) for
modeling nonlinear relationships. Each technique was applied independently to the out-
puts of the five multi model features extraction, allowing us to assess their individual
contributions and comparative effectiveness. This systematic evaluation provides a clear
basis for identifying the most reliable technique for classification. This ensemble frame-
work leveraged the complementary strengths of each constituent model while mitigating
their individual weaknesses. The voting ensemble consistently demonstrated improved
performance compared to individual models, achieving a more favorable trade-off between
sensitivity and specificity.

This study achieved three primary objectives: First, it quantified the relative contribu-
tion of different extraction techniques to diagnostic performance. Second, it demonstrated
the superiority of ensemble approaches over individual models for EEG classification
tasks. Finally, the study established an optimized framework for clinical applications,
with particular emphasis on achieving high sensitivity, which is critical for minimizing
missed detections of neurological disorders. While specificity remains important, the re-
sults underscore that optimized feature extraction combined with intelligent model fusion
is especially effective in enhancing sensitivity, thereby ensuring reliable early detection in
clinical practice.

3.2. Results

The analysis for the five models based on true positives (TP), true negatives (TN),
false positives (FP), false negatives (FN), precision, recall (sensitivity), and F1 score are
given in Table 1. The evaluation was performed on a testing dataset of 274 patients,
including 126 abnormal and 148 normal cases. The results reveal notable trade-offs between
sensitivity and precision across the models. Model 1 demonstrates the highest recall (0.8889),
indicating strong ability to identify positive cases, which is further supported by the highest
F1 score (0.7782). However, this comes at the cost of a relatively high false positive count
(FP = 50), which lowers its precision (0.6914). Model 2 shows a modest balance with lower
precision (0.6494) and recall (0.7937), resulting in a lower F1 score (0.7141). Model 3, on the
other hand, achieves the highest precision (0.7946) with a significantly lower FP rate (23),
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but suffers from the lowest recall (0.7063) among all models, reflecting a tendency to miss
more actual positive cases (FN = 37). Model 4 presents the most balanced precision-recall
combination (0.7049 and 0.6825), but with a slightly reduced overall F1 score (0.6945).
Model 5 offers a middle ground, with moderate precision (0.6812) and recall (0.7460),
producing an F1 score of 0.7118. Overall, some models show high sensitivity but lower
specificity, while others exhibit the opposite pattern. This variation highlights the strengths
and weaknesses of individual models and motivates the proposal of a voting system to
leverage the complementary advantages of different models. Table 2 provides a comparison
of the models in terms of true positives (TP), true negatives (TN), false positives (FP), false
negatives (FN), precision, recall, and F1 score.

Table 2. Comparison of model performance of the five models (Model 1: Odd-CNN-LSTM, Model 2:
Min-CNN-LSTM, Model 3: Max-CNN-LSTM, Model 4: Avg-CNN-LSTM, and Model 5: Even-CNN-
LSTM), including true positives (TP), true negatives (TN), false positives (FP), false negatives (FN),
precision, recall, and F1-score. The evaluation was conducted on a testing set comprising 274 patients.
The results highlight the trade-offs between sensitivity (recall), specificity, and overall predictive
balance across models.

TP TN FP FN Precision Recall F1 Score Total Abnormal Total Normal

Model 1 112 98 50 14 0.6914 0.8889 0.7782 126 148
Model 2 100 94 54 26 0.6494 0.7937 0.7141 126 148
Model 3 89 124 24 37 0.7946 0.7063 0.7470 126 148
Model 4 86 112 36 40 0.7049 0.6825 0.6945 126 148
Model 5 94 104 44 32 0.6812 0.7460 0.7118 126 148

The confusion matrices for the five models (Model 1–Model 5) is presented in Figure 3.
Model 1 (Odd-CNN-LSTM) demonstrates strong sensitivity with 112 true positives, but also
a relatively high number of false positives (50). Model 2 (Min-CNN-LSTM) shows slightly
reduced sensitivity compared to Model 1, with 100 true positives, and a similar level of false
positives (54). Model 3 (Max-CNN-LSTM) achieves the best balance, with 89 true positives
and the lowest false positives (23), while also obtaining the highest true negatives (125),
highlighting strong specificity. Model 4 (Avg-CNN-LSTM) reflects a higher false negative
count (40), though it compensates with a larger number of true negatives (112). Finally,
Model 5 (Even-CNN-LSTM) provides moderate performance, with 94 true positives and
104 true negatives, but also a noticeable level of misclassifications (32 false negatives and
44 false positives). Overall, the comparison across models highlights varying trade-offs
between sensitivity and specificity, suggesting that no single model dominates across all
metrics, and ensemble integration may provide a more robust classification outcome.

The performance across the five models is shown in Figure 4, which demonstrates a
clear trade-off between sensitivity and specificity. Model 1 (Odd-CNN-LSTM) achieves
the highest sensitivity (88.9%), making it the most effective at detecting positive cases,
but this comes with a lower specificity (66.2%), indicating a higher rate of false positives.
Model 2 (Min-CNN-LSTM) shows a relatively high sensitivity (79.4%) but with the lowest
specificity (63.5%) among all models, suggesting a similar bias toward identifying positives.
In contrast, Model 3 (Max-CNN-LSTM) stands out with the highest specificity (84.5%),
reflecting its strength in correctly identifying negative cases, and it also achieves the highest
accuracy (78.1%), despite having the lowest sensitivity (70.6%). Model 4 (Avg-CNN-LSTM)
offers a balanced performance with moderate sensitivity (68.3%) and specificity (75.7%),
leading to an accuracy of 76.4%. Model 5 (Even-CNN-LSTM), while showing the lowest
accuracy (72.26%), maintains relatively balanced sensitivity (74.6%) and specificity (70.6%),
suggesting a more neutral classification behavior.
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Figure 3. Confusion matrices of the five models: (a) Model 1: Odd-CNN-LSTM, (b) Model 2:
Min-CNN-LSTM, (c) Model 3: Max-CNN-LSTM, (d) Model 4: Avg-CNN-LSTM, and (e) Model 5:
Even-CNN-LSTM) illustrating classification performance on abnormal (A) and normal (N) EEG
signals. The matrices highlight variations in true positive, true negative, false positive, and false
negative counts across models, reflecting their trade-offs between sensitivity and specificity.

It is obvious from these results reveal some models are more sensitive but less specific,
while others are more conservative in detecting positives. To benefit from the strengths
of each, a voting system is proposed, where different ensemble strategies will be tested
and evaluated to achieve a more robust and balanced classification performance. Figure 4
illustrates a bar chart that visually compares the accuracy, sensitivity, and specificity trends
across all five models, helping to highlight the differences in their behavior.
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Figure 4. Bar Chart for comparison of accuracy, sensitivity, and specificity across the five models
(Odd-CNN-LSTM, Min-CNN-LSTM, Max-CNN-LSTM, Avg-CNN-LSTM, and Even-CNN-LSTM).

To enhance EEG-based abnormal vs. normal EEG classification, we propose a two-stage
meta-learning framework, where the predictions of five base models (Model 1–Model 5) serve
as inputs to three distinct meta-classifiers: Random Forest (RF), Support Vector Machine
(SVM), and Linear Regression (LR). In the first stage, each base model generates its classifi-
cation output for the EEG data. In the second stage, these outputs are aggregated using
three separate voting systems: (1) RF-based voting, which learns non-linear relationships
between the base models’ predictions; (2) SVM-based voting, which optimizes decision
boundaries for maximal margin separation; and (3) LR-based voting, which applies a linear
weighting scheme to combine predictions. Each meta-classifier is trained and evaluated
on accuracy, sensitivity, and specificity to determine which approach best improves upon
the individual models’ performance. This systematic comparison will identify whether a
non-linear (RF/SVM) or linear (LR) meta-learner is most effective for consolidating diverse
EEG classification outputs in clinical settings. Table 3 presents a comparison of three voting
system architectures SVM, logistic regression, and Random Forest applied to EEG-based
abnormal vs. normal EEG classification, using TP, TN, FP, FN, precision, recall (sensitivity),
and F1 score as evaluation metrics. Among the models, the Random Forest-based voting
system achieved the highest recall (92.86%), indicating superior ability to correctly identify
patients with abnormal EEG recordings. This is particularly critical in medical diagnosis,
where missing a true positive case (i.e., a false negative) can lead to delayed or incorrect
treatment. Although the Random Forest model exhibited the lowest precision (74.05%),
it yielded the highest F1 score (82.37%), reflecting a strong balance between precision
and recall. The logistic regression–based system achieved the highest precision (83.33%)
but exhibited the lowest recall (75.39%), indicating a higher rate of false negatives. This
characteristic may limit its suitability for clinical EEG screening applications, where failing
to detect abnormal EEG activity has more serious clinical consequences than incorrectly
classifying normal EEG recordings as abnormal. The SVM-based system offered a balanced
performance, with a precision of 77.14%, recall of 85.71%, and an F1 score of 81.2%. Overall,
although the Random Forest–based voting system exhibits slightly lower precision, its
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higher sensitivity makes it particularly suitable for clinical EEG screening scenarios, where
minimizing missed abnormal EEG recordings is of primary importance.

Table 3. Performance comparison of three voting-based ensemble models SVM, LR, and RF evaluated
using true positives (TP), true negatives (TN), false positives (FP), false negatives (FN), precision,
recall, and F1-score. The results demonstrate varying trade-offs between precision and recall, with
the RF-based voting model achieving the highest recall, while the LR-based voting model provides
the highest precision.

TP TN FP FN Precision Recall F1 Score

SVM-based voting Model 108 116 32 18 0.7714 0.8571 0.812
LR-based Voting Model 95 129 19 31 0.8333 0.7539 0.7917
RF-based Voting Model 117 107 41 9 0.7405 0.9286 0.8237

The confusion matrices reveal distinct performance characteristics for the three en-
semble voting models, as illustrated in Figure 5. The SVM-based model achieves 108 true
positives and 116 true negatives, corresponding to a sensitivity of 77.1% and a specificity of
86.6%. This reflects balanced performance, though the 32 false positives highlight some
limitations in sensitivity. The Linear Regression-based model records 95 true positives and
129 true negatives, yielding a sensitivity of 75.4% and the highest specificity of 87.2% among
the models. While it is strong at correctly identifying negative cases, its lower sensitivity
indicates a higher risk of missed detections. In contrast, the Random Forest-based model
achieves the highest sensitivity at 92.9% with 117 true positives and only 9 false negatives,
making it the most effective at minimizing missed cases. However, its specificity is lower
at 72.3% due to a higher false positive rate of 41. Overall, the Random Forest model is
most suitable for sensitivity-critical clinical applications, the Linear Regression model is
preferable when specificity is prioritized, and the SVM model provides a moderate balance
between the two.

The bar chart in Figure 6 compares the performance of three ensemble voting tech-
niques SVM, Linear Regression, and Random Forest used in EEG-based abnormal vs.
normal EEG classification, evaluated by accuracy, sensitivity, and specificity. The Random
Forest-based system outperformed the others in terms of sensitivity (92.86%) and accuracy
(82.6%), making it the most effective at correctly identifying patients with abnormal EEG
recordings. This high sensitivity is particularly valuable in medical applications where
minimizing false negatives is critical to avoid missed diagnoses. SVM showed a balanced
performance with an accuracy of 81.2%, sensitivity of 85.7%, and specificity of 78.38%, sug-
gesting it maintains a reasonable trade-off between detecting true positives and avoiding
false positives. In contrast, the Linear Regression model achieved the highest specificity
(87.1%) indicating a strong ability to correctly identify healthy individuals but at the cost
of the lowest sensitivity (75.4%), which could lead to more undiagnosed cases. Given the
medical importance of capturing all true disorder cases, the Random Forest approach is the
most clinically appropriate due to its superior sensitivity and overall robust performance.
In EEG classification, sensitivity is a critical performance metric, particularly in clinical
applications where missing pathological activity such as epileptic seizures or abnormal
brain rhythms can have serious consequences. High sensitivity ensures that the model
detects the majority of true neurological events, reducing the risk of false negatives that
could delay diagnosis or intervention [42]. While specificity and accuracy remain impor-
tant for minimizing false alarms and overall correctness, sensitivity is often prioritized
in EEG analysis due to the high stakes of overlooking critical abnormalities. Striking a
balance between these metrics is challenging, as overly sensitive systems may increase false
positives, but in many medical contexts, the cost of missing a true event outweighs the cost
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of additional verification. Thus, optimizing sensitivity without compromising practical
utility is a key focus in EEG classification research.

Figure 5. Confusion matrices of the three voting-based ensemble models: (a) SVM-based, (b) Linear
Regression-based, and (c) Random Forest-based. The matrices illustrate classification outcomes
in terms of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN),
highlighting the trade-offs between sensitivity and specificity for each technique.

Figure 6. Bar Chart for the three voting-based ensemble models: SVM-based, Linear Regression-based,
and Random Forest-based. The matrices illustrate classification outcomes in terms of sensitivity and
specificity and accuracy for each technique.

Table 4 provides a comparison of the proposed model with representative EEG classifi-
cation approaches reported in the literature, considering data selection techniques, feature
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extraction methods, classification algorithms, accuracy, and sensitivity. All referenced
studies were evaluated using the Temple University Hospital (TUH) EEG corpus; however,
direct numerical comparison should still be interpreted cautiously due to differences in
data partitions, preprocessing strategies, windowing methods, and evaluation protocols.
Nevertheless, under the adopted evaluation setting, the proposed ensemble framework
demonstrates competitive overall accuracy while achieving high sensitivity, highlighting
its suitability for abnormal EEG screening tasks where minimizing false negatives is crit-
ical. Sharma [43] employed fuzzy entropy and fractal-based features combined with an
SVM classifier, achieving an accuracy of 79.34% and a sensitivity of 77.54%, while Tomas
et al. [44] reported a lower accuracy (68%) using an HMM with phase synchronization and
energy features. Western et al. [45] achieved an accuracy of 81.88% using a CNN-based
approach; however, sensitivity was not reported, limiting its clinical interpretability. T.
Wu [46] attained the highest reported accuracy (89.13%) using a DWT–CatBoost framework,
accompanied by a sensitivity of 84.92%. Similarly, Albaqami [47] leveraged wavelet packet
decomposition (WPD) with LightGBM to achieve an accuracy of 86.59% and a sensitivity
of 81.74%. In comparison, the proposed model achieves competitive accuracy (82.68%)
while demonstrating notably higher sensitivity under the adopted evaluation protocol,
underscoring its effectiveness in reducing false negatives. This characteristic is particularly
important in clinical screening applications, where the cost of missed abnormal EEG detec-
tions often outweighs that of false positives. Accordingly, while maintaining competitive
overall accuracy, the Random Forest–based voting framework exhibits improved sensitivity,
reinforcing its practical value for abnormal EEG screening applications.

Table 4. Comparison of Model Performance with different architectures in literature in terms of data
selection technique, feature extraction, classification technique, accuracy and sensitivity.

Data Selection Technique Feature Extraction Classification Technique Accuracy Sensitivity

Sharma [43] 1st minute

Fuzzy Entropy +
Logarithmic Squared

Norm + Fractal
Dimension

SVM 79.34 77.54%

Tomas et al. [44] - PS + PLV + Energy HMM 68% 68%
Western et al. [45] 2nd minute - CNN 81.88% -

T Wu [46] - DWT CatBoost 89.13% 84.92%
Albaqami [47] - WPD LightGBM 86.59% 81.74%

Abooelzahab [28] Windowing Technique CNN LSTM 82.68% 78.5%

Proposed Model Windowing Technique 5 Multi model + CNN
LSTM model

Random Forest
Voting system 82.68% 92.86%

4. Discussion
The Comparative analysis with existing approaches demonstrates the effectiveness of

the proposed Random Forest–based voting system for abnormal EEG detection. While ear-
lier studies achieved varying levels of performance, many faced trade-offs between accuracy
and sensitivity. For instance, Sharma [43] reported an accuracy of 79.34% with moderate
sensitivity (77.54%), while Tomas et al. [44] achieved substantially lower performance (68%
accuracy and sensitivity) using HMM-based methods. More advanced techniques such as
DWT with CatBoost [46] and WPD with LightGBM [47] reached higher accuracies of 89.13%
and 86.59%, with sensitivities of 84.92% and 81.74%, respectively. CNN-based methods,
such as that of Western et al. [45], also showed promising accuracy (81.88%) but without
explicitly reporting sensitivity. In contrast, the proposed model, though achieving a slightly
lower overall accuracy (82.68%) compared to CatBoost and LightGBM, demonstrated a
substantially higher sensitivity (92.86%). This finding underscores the model’s strength
in correctly identifying positive cases, which is particularly critical in clinical applications
where missed detections can have severe consequences. By prioritizing sensitivity while
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maintaining competitive accuracy, the proposed framework addresses a key limitation
observed in prior methods and establishes itself as a more reliable solution for practical
neurological disorder detection.

The superior sensitivity achieved by the proposed framework can be attributed to
the combination of a windowing-based data selection strategy and the integration of five
complementary CNN-LSTM models through a Random Forest voting scheme. Windowing
enhances the temporal resolution of EEG signals, allowing the extraction of more discrim-
inative features, while the ensemble fusion mitigates the bias of individual models and
captures diverse decision patterns. This synergy improves the system’s ability to detect
subtle EEG abnormalities, thereby reducing false negatives and ensuring higher reliability
in clinical diagnosis.

Despite these encouraging results, several limitations should be acknowledged. First,
although the proposed framework demonstrates strong performance on a large-scale
clinical EEG dataset, it addresses a binary abnormal-versus-normal classification task and
does not distinguish between specific neurological conditions. Second, the ensemble relies
on fixed, non-learnable temporal transformations; incorporating learnable multi-scale
or attention-based mechanisms may further enhance representational capacity. Third,
while cross-validation provides a reliable estimate of generalization performance, external
validation on independent datasets would further strengthen clinical applicability.

Future research will focus on extending the proposed framework to multi-class EEG
classification, integrating attention-based or transformer architectures within the ensemble,
and exploring patient-specific adaptation strategies. Additionally, improving model inter-
pretability and validating the framework across multiple clinical datasets remain important
directions for enhancing trust and deployment in real-world clinical environments.

5. Conclusions
This study proposed and evaluated an ensemble-based EEG classification framework

that integrates multiple feature extraction strategies with a hybrid CNN-LSTM architec-
ture and ensemble learning. By systematically analyzing five distinct feature extraction
approaches and three ensemble voting techniques, the results demonstrated the inher-
ent trade-offs between sensitivity and specificity across models. Notably, the Random
Forest-based voting ensemble achieved the highest sensitivity of 92.86%, outperforming
previously reported methods in the literature and establishing it as the most effective for
sensitivity-critical clinical applications such as seizure detection, where minimizing false
negatives is essential. In contrast, the Linear Regression-based ensemble provided the
highest specificity, while the SVM-based ensemble offered a balanced trade-off between
sensitivity and specificity. These findings highlight the importance of combining optimized
feature extraction with intelligent model fusion to enhance both robustness and clinical
reliability. Overall, the proposed framework not only outperforms comparable approaches
in literature but also contributes a flexible and effective solution for EEG-based abnormal
detection, paving the way for future research to refine ensemble integration strategies and
extend their application to broader neurological diagnostic settings.
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