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ABSTRACT Direction of Arrival (DOA) estimation of highly correlated or coherent sources remains a
challenging problem, particularly for subspace-based methods such as MUSIC and Root-MUSIC, which
require spatial smoothing or eigenvalue decomposition. This work introduces a decomposition-free DOA
estimation algorithm that exploits the inherent Toeplitz structure of uniform linear arrays (ULAs). The
method constructs a structured Toeplitz matrix directly from the received data vector, forms a real,
symmetric compound matrix to enable real-valued processing, and extracts structured sub-blocks without
matrix decomposition. A polynomial matrix is then generated, and the DOAs are obtained by solving its
roots, thereby bypassing covariance decomposition entirely. This design reduces computational burden,
improves numerical stability, and inherently accommodates coherent sources without the need for spatial
smoothing. Computational complexity analysis shows significant savings compared to subspace methods,
while MATLAB simulations across various SNR, snapshot, and array size conditions validate estimation
accuracy. Furthermore, a hardware realization on the NI PXIe-7993 FPGA platform demonstrates that
the decomposition-free structure requires minimal hardware resources and execution cycles, making the
algorithm highly suitable for real-time embedded applications.

INDEX TERMS DOA estimation, coherent sources, FPGA implementation, Toeplitz matrix, decorrelation,
matrix decomposition-free.

I. INTRODUCTION They rely on covariance estimation and eigen/singular value

Direction-of-arrival (DOA) estimation plays a central role
in array signal processing with broad applications across
radar and electronic warfare, sonar and underwater acous-
tics, wireless communications (including beamforming for
5G/6G and massive MIMO), audio/speech capture, and
navigation/localization systems [1], [2]. Accurate and low
latency DOA estimates enable spatial filtering, interference
suppression, target localization and tracking, and adaptive
beamforming which are functions central to both civilian and
defense sensor systems.

Classical subspace-based algorithms such as MUSIC,
Root-MUSIC [3], and ESPRIT [4] provide high-resolution
DOA estimates and serve as standard benchmarks [5].
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decomposition (EVD/SVD) to separate signal and noise
subspaces, offering statistical efficiency under ideal condi-
tions [2]. However, the cubic complexity and high mem-
ory demand of EVD/SVD limit their scalability for large
arrays and real-time systems. Moreover, coherent sources
cause covariance rank deficiency, breaking subspace orthog-
onality unless preprocessing (e.g., spatial smoothing or
forward—backward averaging) [6] is used, which reduces
aperture and increases computational load.

To adrress these limitations, several approaches have
been proposed that eliminate full EVD/SVD by exploit-
ing algebraic or linear relations within the array manifold.
Propagator and partial-propagator methods form subarray
mappings to estimate DOAs without eigen analysis, offer-
ing major computational savings but reduced robustness to
noise and mismatch [7], [8]. Yan’s two-step Root-MUSIC
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(TS-Root-MUSIC) [9], [10] similarly uses subarray cross-
correlations and polynomial rooting to lower complex-
ity, trading some optimality for efficiency and real-time
suitability.

Another important research direction exploits the Toeplitz
or centro-Hermitian structure of ULA covariances [11], [12],
[13], [14] to enhance estimation and reconstruct full covari-
ances from partial or corrupted data. Low-rank Toeplitz
reconstruction and completion via rank minimization or
nuclear norm relaxation achieve high-resolution DOA and
handle coherent sources without smoothing, but rely on iter-
ative convex optimization that limits real-time use. Robust
extensions, such as correntropy-based and fused-covariance
formulations [13], [15] improve resistance to impulsive noise
and outliers, albeit with added iteration and tuning overhead.

Sparse and coarray techniques, including nested and
coprime arrays, extend the virtual aperture and degrees of
freedom, enabling more sources to be resolved with fewer
sensors. Combined with covariance reconstruction and sparse
recovery [16], [17], they effectively support subspace pro-
cessing on virtual arrays, though they remain sensitive to
model mismatch and add computational cost in covariance
interpolation.

A separate research approach leverages tensor decompo-
sitions [18] to exploit multiway structures in multi-snapshot
or multifrequency data. Tensor methods, such as PARAFAC
[19], can identify sources under relaxed conditions but
involve iterative least-squares or higher-order SVD opera-
tions with high computational and memory demands, making
them sensitive to initialization and less suited for real-time
FPGA implementation [20].

More recently, machine learning (ML) and deep learning
(DL) approaches [21], [22], [23] have been applied to DOA
estimation, offering robustness to array imperfections, non-
Gaussian noise, and low snapshot conditions. However, they
often require large, well-matched datasets and are challeng-
ing to deploy on resource-constrained hardware. To address
this, recent studies have developed lightweight and hardware-
aware ML/DL architectures, including compact CNNs for
array calibration and DOA estimation [24], temporal-fusion
transformers with attention compression [25], and sparse
or quantized models for efficient inference [26]. Hybrid
and interpretable frameworks such as deep unfolding net-
works [27] and self-supervised contrastive learning mod-
els [28] further improve transparency and generalization.
Collectively, these advances mark a clear trend toward
efficient and deployable ML-based DOA estimators.

While most of the existing algorithms sufficed with numer-
ical simulations for validation, a few have also looked at hard-
ware implementations and real-time experiments. FPGA and
SoC designs employing pipelined, fixed-point, and stream-
ing architectures have accelerated unitary-MUSIC [29], [30],
[43], [44], [45], [46], QR/LU/LDL/Cholesky pipelines [31],
[32], [33], [34], [35], and CORDIC-based EVD approxima-
tions [36], [45], though at high resource cost. In contrast,
decomposition-free or algebraic methods better align with
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DSP and streaming architectures, minimizing memory trans-
fers and improving efficiency on platforms such as the NI
PXIe-7993 FlexRIO [37], [38].

In summary, despite recent progress in fast subspace,
sparse, and ML-based DOA algorithms, a fundamental trade-
off remains between estimation robustness, computational
efficiency, and hardware feasibility. Accelerated variants of
MUSIC [43], [47], [48], orthogonal matching pursuit (OMP)
extensions [49], and tensor decompositions [50] have reduced
complexity, while lightweight and hybrid machine learning
models [24], [25], [26], [27], [28] enhance data efficiency.
Yet, achieving simultaneous coherence resilience, low arith-
metic cost, numerical stability at low SNR, and real-time
FPGA suitability remains an open challenge. This moti-
vates the development of DOA algorithms that (a) handle
coherent sources without spatial smoothing, (b) avoid full
EVD/SVD, (c) maintain stability under moderate/low SNR
and few snapshots, and (d) map efficiently to FPGA and
real-time platforms.

Motivated by these challenges, the proposed work develops
a decomposition-free DOA algorithm tailored for coherent
sources. The proposed method (i) constructs a Toeplitz-
structured matrix directly from ULA data, (ii) applies a
unitary centro-Hermitian transform to form a real, symmetric
compound matrix with reduced arithmetic, (iii) extracts low
dimensional sub-blocks without eigen decomposition, and
(iv) assembles a structured matrix to form a polynomial,
with DOAs recovered via root finding. This pipeline blends
Toeplitz/centro-Hermitian processing with the low complex-
ity advantages of propagator and two-step rooting methods,
making it well suited for FPGA/SoC implementation
[30], [37].

The proposed method employs a Toeplitz-structured
matrix instead of a covariance matrix to enhance resolution
and estimation accuracy of coherent sources while reducing
computational complexity, making the proposed algorithm
highly suitable for hardware implementation. Unlike conven-
tional spatial smoothing [6] or tensor decompositions [18],
our method preserves the full array aperture and avoids
the exponential complexity of higher order algebraic oper-
ations. To the best of our knowledge, this is among the first
works to demonstrate a Toeplitz-driven subspace framework
that jointly addresses coherence, complexity, and hardware
feasibility.

The key contributions of this paper are summarized as
follows:

1. Decomposition-free and covariance-free DOA estima-
tion: The proposed algorithm eliminates the need for
matrix decomposition (EVD/SVD/QR) as well as for
computing the covariance matrix, thereby reducing
complexity and enhancing scalability.

2. Partitioning-based polynomial rooting: The proposed
algorithm partitions the transformed Toeplitz matrix
into sub-blocks that naturally preserve rotational invari-
ance, enabling direct polynomial formation and rooting
for DOA estimation without decomposition.
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3. Hardware friendly design: Due to its low arithmetic
complexity and decomposition-free nature, the pro-
posed method is particularly suited for FPGA imple-
mentation, making it attractive for real-time and
resource constrained applications.

4. Support for coherent and non-coherent sources: The
proposed method reliably estimates DOAs for both
coherent and non-coherent signals with improved
efficiency and scalability.

The proposed method is validated in MATLAB and Lab-
VIEW FPGA simulations confirming its accuracy and com-
putational advantages over classical and recent algorithms,
and implemented on NI PXIe-7993 hardware. Compared
with decomposition-based methods (such as [9], [14], [40]),
the proposed algorithm offers lower complexity, robust-
ness to coherence, and suitability for fixed-point FPGA
implementation.

The remainder of this paper presents the system model and
proposed algorithm, analyzes computational and implemen-
tation complexity, presents simulation results for coherent
and uncorrelated scenarios, presents FPGA implementa-
tion details, calculates computation time for the proposed
algorithm, and finally draws conclusions.

Il. SYSTEM MODEL AND PROPOSED ALGORITHM

The system setup in Fig. 1 employs a uniform linear array
(ULA) consisting of 2N + 1 antenna elements. The array
is arranged such that the central element, indexed as O,
acts as the reference point, while the remaining 2N ele-
ments are symmetrically distributed to its left and right. The
inter-element spacing d is fixed at half the wavelength of the
impinging signals to avoid spatial aliasing and ensure optimal
sampling of the wavefront. Furthermore, the incoming signals
are assumed to arrive from the far-field, guaranteeing planar
wavefronts across the array aperture and thereby justifying
the use of the narrowband array model.

(ﬁA))

k-th
source
in the far-field

Xixg X; X; X3 X, X1 X3 X3 Xy
FIGURE 1. Receiver setup employing a ULA with 2N + 1 elements.
Assume K narrowband source signals arrive at the array
from directions 616, ... 0k), where K <2N + 1. All sources
are assumed to share the same carrier frequency. The received

signal at the n-th element of the ULA for a snapshot at time #
can then be expressed as:

=3 AEO )
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where
si (t) = represents the i incoming source signal received
by the ULA,

nn(t) = noise term modeled as AWGN at the n'? array
element of the ULA,

Xn(t) = signal observed at the n' array element at time 7.

With the central array element designated as the reference,
the collective output of the (2N + 1) antenna elements posi-
tioned along the linear axis can be expressed in vector form,
representing the received data across the array, as:

X_n (@)
XO=| Xo) |=A@)s@®) +n@) ()

Xy ()

where X(¢) is of dimension (2N+1) x 1, and
A@®)=[a®) a®) ...alk)] (3)
is the array manifold matrix of soze 2N+ 1) xK, where
T
a@) =[@ -1 ] “

is the corresponding array
(2N+1) x 1, where

steering vector of size

we = e—j(?—;')dcos(ek) )
s(t) is the vector of K received signals
s() = [s10 s2(0) - sg0] " ©)

and,

nO=[(nv@ @ @)@

where n(¢) represents the noise vector of dimension
(2N + 1)x1. Note: ( )Y denotes the Hermitian operation,
()T denotes the transpose, and ()* denotes the complex con-
jugate operation. .

In the proposed approach, the received signal vectors X ()
are first averaged over L snapshots, as:

y—n ()
L L :
y(r)=Z§Xi(r>= yo_(t) ®)
N (1)

In the next step, the Toeplitz-structured data matrix Y
of size (N + 1) x (N + 1) is constructed from the
sample-averaged data vector y(t) as:

yo Y-1 Y-N
yr Yo Y—(N-1)
Y = Y2 n Y-(N-2)
YN  YN-1 e Yo
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S0 S—1 S_N
S1 S0 S—(N-1)
— 52 S1 S—(N-2)
SN SN—1 t 50
no n—_i n_n
ny. no n—(N-1)
n n n_(N—
+ 2 1 (N=-2) (9)
nn ny-—-1 t no

where s; denotes the source signal component received at the
i-th element of the ULA, and n; represents the corresponding
noise component.

For simplicity, in the absence of noise, the Toeplitz matrix
Y can be expressed using the Vandermonde decomposition
theorem [41] as:

Y =As,A”
While under noisy conditions, we obtain:
~  <H ~_ _ ~H
Y =Y () +Y,() =AS,A" +AN, A" (10)

where A = [a(6;) a6) ---a(0k)] is the (N + 1)
x K Vandermonde array steering matrix with a (6y) =

leij(%)dws(ek) .. .eij(%)wcos(ek) ' .S, = diag[sy, ...,
sx] is a denotes a (K x K) diagonal matrix with strictly
positive entries. where sx > 0 (k = 1, ..., K) represent the
incident signal sources, and N, = diag[ny,..., ng] denotes
the diagonal noise matrix.

The Hermitian Toeplitz matrix Y inherits its rank from
the Vandermonde steering matrix ;1, which is limited to the
number of sources K. Thus, the rank of Y equals the number
of incident sources, ensuring that DOAs can be accurately
estimated even for coherent sources. In practice, noise dis-
rupts the conjugate symmetry of Y, as off-diagonal noise
elements are not exact conjugates. For instance, the noise
elements n_ and np in (9) are not equal (n—p, # np *).
To address this, we add ¥ to Y# | which preserves the Toeplitz
structure while enabling a real-valued transformation of the
matrix.

Y = +YH) = (Y +JY*)) (11)

where J is an (N + 1) x (N + 1) matrix whose off-diagonal
entries are ones and rest of the elements are zeros.

Also, ¥ = Y+¥# = 45,4" + (As,A™)H
—As,A" +4s, A"
~ ~H ~H ~ ~H
=A(S,A" +SIAT) =A(S, +5))HA
¥ =Y +Y" = AQRe(S,)A"

It should be mentioned here that the conjugate smooth-
ing operation in (11) is effectively equivalent to apply-
ing forward-backward averaging to the data matrix Y,
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yielding Y. This process enhances the decorrelation of
strongly correlated or coherent signals, thereby improving
the accuracy of DOA estimation in challenging multipath
environments.

Next, Y in (11) which is a complex-valued matrix is con-
verted to a real-valued matrix as follows:

IA/'r = real (f/) +imag (IA/') *J (12)
o o0 --- 0 1
o o0 --- 1 o0

where J = | 0 0 | is of size (N +1) x
1 .0
1 0 --- 0 O

(N +1).

The proposed strategy of converting complex-valued
matrices into equivalent real-valued representations offers
notable efficiency advantages over conventional unitary
transformation approaches. Specifically, this conversion
reduces computation time by approximately a factor of four
and decreases memory requirements by half. Furthermore,
in the subsequent stages of the DOA estimation algorithm, the
use of real-valued matrices further lowers the computational
burden by at least fourfold, thereby enhancing the overall
efficiency of the proposed method. A

In the next step, the real-valued matrix Y, is partitioned
into structured sub-blocks as:

—  Riz Ry3
Ye=|Ray — Rp (13)
R;;1 Ry -

where Ri2, Ry3, Rp1, etc., are submatrices of Y, defined as:

Ry = YK +1:2K, 1:K),
Ry = Y:(2K + 1:end, K + 1 : 2K),
R =Y:(1:K, K+1:2K),
Ri; = Y.(2K +1:end, 1:K)

where K is the number of sources impinging on the ULA.

Partitioning the real-valued matrix Y, into sub-blocks pro-
vides a structured way to capture cross-relations between
array elements, preserving the rotational invariance needed
for DOA estimation without relying on eigenvalue or
singular value decomposition. These sub-blocks encode
the phase shifts introduced by different source directions,
enabling polynomial-based DOA estimation where the
polynomial roots correspond directly to the DOAs. This
avoids costly decompositions while maintaining estimator
accuracy.

In addition, working with smaller structured submatrices
improves computational efficiency and hardware suitability.
The reduced dimensionality accelerates processing and maps
naturally onto FPGA pipelines for matrix operations and
polynomial formation, lowering latency and resource usage.
By avoiding large scale matrix factorizations, the approach
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also enhances numerical stability in noisy or low SNR sce-
narios, making partitioning a practical and robust foundation
for decomposition-free DOA algorithms.

Next, define the steering matrix as:

A(6)
Ax(0) (14)
A3(0)

where A1(0) € CK*k) A5) e CK*¥ and A3(0) €
CWN—2k)xk

Define R;; = A(0)S,A/ (6)
Let ¢, = RpRy)’ (15)
¥ = [A3(0)S,A% (0)][A1(6)S,A5 0)] "
= A3(0)S,AY 0)AS ©)S, 7 A1 (0)
= A30AT'(0) (16)
Similarly, define ¥, = R31R;[" = A3(0)A, ' (6) (17)

The block-partition plus the ¥; construction yields a matrix
W whose nullspace captures the signal structure (so the phase
factors can be recovered by standard root methods applied to
a derived matrix).

Define the block matrix W, as:

yi 0
w=1| o yf
-1 I
AsOA O 0
= 0 (A3@)AS o))
—1I —1I

A30)AT6) 0 T } A1)

0 A30)A; ' (0) —T A200)

WHA = [
A3(0)

_ [A30AT O)A(6) — A3(0)

= =0 18
[A3(9)A2_1(9)A2(9) - A3(0)} (19

Hence, it is shown that the source subspace represented by
the steering matrix A(6) lies in the null space of W.

Next, compute polynomial G,

=UfwwHiy (19)
yi 0
where, WWwWH — 0 1#51
1 -1
S
0 vy -1
vivl? o0 —yl
= o gyl ¥ (20)
-yt —yf
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and U isa (N + 1) x (N 4+ 1) unitary matrix given as:

i 0 0 0 1
0 j - 1 0
U=Ij+J=|0 © 0
S B
1 0 -~ 0

where I is identity matrix and J is as shown in (12).

Note that all required operations for ¥; and W are mul-
tiplications, additions and small inverses which map well
to fixed-point, pipelined FPGA logic. Root-finding can be
relegated to a host CPU where high precision arithmetic is
available.

The polynomial roots wy of Gn in (19) capture the spatial
frequency characteristics of the incoming signals. Like the
Root-MUSIC algorithm, the DOA estimates are obtained by
identifying the roots nearest to the unit circle and mapping
their arguments to angular values using the array steering
relationship.

21

(Aangle wi) )
6r = arccos | ———

2mwd

Now, the proposed algorithm can be summarized as
follows:

1: Form the Toeplitz structured data matrix Y from the data
vector x(t) averaged over L samples as in (8) and (9)

2: Estimate ¥ as given in (11)

3: Transform the complex matrix Y to a real matrix f/r as
given by (12)

4: Divide IA/', into submatrices as expressed in (13)

5: Construct the matrix W according to (18) with ¥ and
¥, computed as in (16) and (17), respectively

6: Generate the polynomial Gn as in (19)

7: Compute the roots of Gn through polynomial rooting
techniques

8: Estimate the DOAs using the formulation in (21)

Ill. ANALYSIS OF COMPUTATIONAL COST

This section analyses the computational cost of the proposed
method (PM) and compares it with that of representative
methods [9], [14], [40] from the literature. The aim is to
demonstrate the efficiency of the PM in reducing the com-
putational burden of DOA estimation. The analysis is carried
out for 2N + 1 antenna elements, L snapshots, and K signal
sources, which serve as the key parameters in formulating
the cost expressions. Table 1 summarizes the computa-
tional requirements of the principal processing steps for the
proposed method.

For a quantitative assessment of computational complex-
ity, the proposed method is compared with the two-step
Root-MUSIC algorithm (TS_DOA) in [9], the single snap-
shot coherent source estimator (SS_DOA) in [14], and the
enhanced Toeplitz—Khatri—Rao approach (TK_DOA) in [40].
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TABLE 1. Computational cost for proposed method.

Algorithm Step Computation Cost

Averaging the data vector

over L samples @NHIE-1)

Toeplitz structure

preservation (N+1y

Unitary transformation 2(N+1)?

Computing W 2(N-2K)K? + 2K3

Matrix multiplication (N-2K)[2K(N-2K) + 2K + 1] + 4N?
Compute Polynomial Roots 2N(N+1)?

Compute DOAs 2N

The computational load is assessed by calculating the total
number of arithmetic operations for K = 3 incident sources
and L = 10 snapshots, while varying the number of antenna
elements N from 8 to 256. The corresponding results are sum-
marized in Table 2. It should be noted that the actual number
of antenna elements is given by 2N + 1. The computational
cost expressions for SS_DOA, TS_DOA and TK_DOA are
given below:

SS_DOA_cost = 2N + 1)(L-1) + (N + 1)+ 2(N + 1)+
2(N + 1)3/3 + N2 (N-K)+ 4N+ 2N(N+1)2+ 2N

TS_DOA_cost (step 2) = LN*>4+ 32K3+ 40K*(N-
2K)+ K3+ 16K*(N-2K)+ 8N(N-2K)>*+ 8(N—-K)*(N-
2K)+ K3+ 2N-1)3

TK_DOA_cost = 2M+1)?L+ QM +1)>(M+1)>*+ M+
1’4 32M + 1)K?+ 2K 3

TABLE 2. Computational cost with varying N.

N PM SS[14] %PM/SS  TK[40] %PM/TK TS[9] %PM/TS
8 2092 3166 66.08 31725 6.59 13194 15.86
16 12372 19499  63.45 362493 3.41 129258 9.57
24 37116 60281 6157 1643661 2.26 490570 7.57
32 82468 | 136774 6030 4919709 1.68 1244586  6.63
48 259572 441953 5873 23600445 110 4520554 5.74
64 592836 1025147 57.83 72624861 0.82 11136810  5.32

128 4470532 7940326  56.30
256 34663812 62509499  55.45

1116763485 0.40
17519700573 0.20

94597674 4.73
780466218  4.44

Table 2 clearly demonstrates the efficiency of the proposed
method, requiring substantially fewer operations compared to
the existing approaches SS_DOA, TK_DOA, and TS_DOA.
The proposed method (PM) achieves substantial computa-
tional savings compared with recent decomposition-free and
subspace-based DOA estimators. When benchmarked against
SS_DOA, PM consistently requires fewer arithmetic opera-
tions, consuming only 55-66% of SS_DOA’s cost across all
tested values of N. Importantly, the relative advantage grows
with array size: at N = 8, PM costs 66.1% of SS_DOA,
while at N = 256, it drops to 55.5%. This indicates that
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PM scales more efficiently, making it better suited for large
ULAs and real-time scenarios where computational resources
are limited.

Compared with TK_DOA, the efficiency difference is
dramatic. Although TK_DOA excels in resolving coherent
sources and extending virtual aperture, its reliance on covari-
ance reconstruction, vectorization, and subspace processing
leads to prohibitive computational growth. At N = 8§,
TK_DOA already requires ~31,725 operations (15x more
than PM), and at N = 256, the complexity exceeds
17.5 billion operations, compared to only ~34 million for
PM. Consequently, PM achieves similar goals with just
0.2-6.6% of TK_DOA’s cost, highlighting its suitability for
FPGA or embedded deployment where TK_DOA would be
impractical.

Relative to TS_DOA, PM again demonstrates superior
efficiency. TS_DOA avoids explicit EVD/SVD but still
incurs heavy costs from polynomial rooting and interme-
diate transformations. The results show that PM consumes
only 4.4-15.86% of TS_DOA’s complexity, with the margin
widening at larger array sizes (from 15.86% at N = 8 to under
4.4% at N = 256). This confirms that PM not only maintains
decomposition-free operation but also scales more favorably
than existing propagator-type alternatives.

Overall, PM grows with linear-to-quadratic complexity
in N, while SS_DOA, TK_DOA, and TS_DOA exhibit much
steeper increases. This consistent efficiency across small
and large arrays underscores PM’s practical advantage for
real-time DOA estimation, FPGA acceleration, and embed-
ded low power platforms. Reduced computational demand
also translates into lower latency and memory requirements,
which are critical in high snapshot or multisource environ-
ments. In summary, PM provides a balanced solution: it is
lighter than TK_DOA, more scalable than SS_DOA, and
more efficient than TS_DOA, making it an attractive candi-
date for practical high performance DOA estimation systems.

IV. NUMERICAL SIMULATIONS AND PERFORMANCE
ANALYSIS

This section presents the outcomes of extensive MATLAB
simulations conducted to assess the effectiveness of the
proposed method (PM) and validate its estimation accuracy
across different scenarios. The performance is evaluated
in terms of root mean square error (RMSE) under vary-
ing conditions, including changes in signal-to-noise ratio
(SNR), number of snapshots, and array size. Simulations
are conducted for up to four sources to be estimated, con-
sidering a mix of both coherent and non-coherent signals,
with snapshots ranging from 1 to 500 and SNR values from
0 dB to 30 dB. The array under study is a 25-element
ULA (N = 12), and AWGN noise model is assumed in
generating the received data. Each configuration is simulated
over 100 Monte Carlo runs to ensure statistical reliabil-
ity. Performance of the proposed method is compared with
SS_DOA [14], TS_DOA [9], and TK_DOA [40] and bench-
marked against the CRB (Cramer-Rao bound).
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A. VERIFICATION OF PROPOSED ALGORITHM

Fig. 2 and Fig. 3 show the graphs for RMSE values vs SNR for
two coherent sources located at 40° and 60°, for the case of
5 and 100 snapshots, respectively. It is clear from the graphs
that PM performs well even at low snapshot counts and has
superior performance when sufficient number of snapshots
are available.

RMSE vs SNR: 100 MC, 5 h 2 coh

—6— PM-DOA1
—— PM-DOA2

RMSE (deg)
3,

Q0 5 10 15 20 25 30
SNR (dB)

FIGURE 2. RMSE vs SNR: two coherent sources estimated with
5 snapshots.

RMSE vs SNR: 100 MC, 100 Snapshots, 2 coherent sources

—&—PM-DOA1
——PM-DOA2 | |

a 5 10 15 20 25 30
SNR (dB)

FIGURE 3. RMSE vs SNR: two coherent sources estimated with
100 snapshots.

Fig. 4 and Fig. 5 present the RMSE versus SNR perfor-
mance for DOA estimation of four sources positioned at 10°,
30°, 60°, and 80°, using 200 snapshots. Fig. 4 demonstrates
the effectiveness of the proposed method when estimating
a combination of coherent and non-coherent sources, while
Fig. 5 illustrates its performance when all four sources are
coherent.

The above graphs demonstrate the robustness and ver-
satility of the proposed method in estimating multiple
non-coherent and coherent signals with high accuracy.

The performance of the proposed method (PM) is further
examined under different numbers of snapshots and antenna
elements. Fig. 6 presents the DOA estimation results for
two coherent sources as the number of snapshots varies
from 1 to 50 and until 500 at an SNR of 10 dB. The results
demonstrate that the proposed method achieves reliable

VOLUME 13, 2025

RMSE vs SNR: 4 sources (2 non-coherent, 1 coherent pair)
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FIGURE 4. RMSE vs SNR: four sources (2 non-coherent and 1 pair of
coherent signals) estimated with 200 snapshots.

RMSE vs SNR: 4 coherent sources
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FIGURE 5. RMSE vs SNR: four coherent sources estimated with
200 snapshots.

estimation accuracy even under low snapshot conditions,
while its performance progressively improves with larger
snapshot counts, highlighting its scalability and effectiveness
in practical scenarios.

Fig. 7 shows the DOA performance of PM in the estimation
of two coherent sources against varying number of antenna
elements (N = 5:4:64) at 10 dB SNR with a single snapshot.
It can be noted that even with a single snapshot, PM performs
well and its performance improves with increasing number of
antenna elements (as expected).

Fig. 8 shows the DOA performance of PM in the estimation
of two coherent sources with 10 snapshots. It can be noted that
there is a marked improvement in performance.

The simulation results shown in Fig. 6, Fig. 7, and Fig. 8
demonstrate that the method is capable of effectively resolv-
ing coherent signals even under limited data conditions. This
underscores the robustness of PM in scenarios where snap-
shot availability is constrained, which is often the case in
real-time or resource limited applications.

The histogram in Fig. 9 illustrates the estimation accuracy
of PM for four coherent sources positioned at 10°, 30°, 60°,
and 80° relative to the ULA. The DOA estimates are obtained
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FIGURE 6. RMSE vs snapshots: two coherent sources (located at 40° and
60°) estimated with SNR = 10 dB.
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FIGURE 7. RMSE vs antenna elements: two coherent sources (located at
40° and 60°) estimated with a single snapshot at SNR = 10 dB.

using 200 snapshots with 25 antenna elements at an SNR of
20 dB.

Next, the angular resolution of the proposed decomposition-
free DOA estimation algorithm was evaluated using four test
scenarios for the case of three coherent sources separated by
2°,3°,5°, and 10°, respectively. These estimates are obtained
using 29 antenna elements with 200 snapshots at an SNR
of 15 dB. The corresponding histograms, shown in Fig. 10,
clearly illustrate that the proposed method accurately resolves
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FIGURE 8. RMSE vs antenna elements: two coherent sources (located at
40° and 60°) estimated with 10 snapshots at SNR = 10 dB.
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FIGURE 9. Histogram of DOA estimation using the proposed method for
four coherent sources located at 10°, 30°, 60°, and 80° with
200 snapshots.

all three sources even under closely spaced conditions. For a
larger number of sources, high estimation accuracy and fine
angular resolution can be maintained by varying the SNR,
number of antenna elements, and/or snapshots, appropriately.

Finally, the robustness of the proposed algorithm under
challenging SNR regimes (below 0 dB) is evaluated. Fig. 11
illustrates the RMSE vs SNR performance for three fully
coherent sources positioned 10° apart at 20°, 30°, and 40°,
respectively. Curves are shown for —5 to +15 dB to empha-
size the target operating regime. All three coherent sources
are fully resolvable at —5 dB and the algorithm maintains
sub-degree accuracy even at —5 dB, with RMSE values in
the range of 0.2° to 0.6°, demonstrating strong robustness in
practical low SNR environments. Performance can be further
improved with increasing number of antenna elements and/or
snapshots.

B. PERFORMANCE COMPARISON

Fig. 12 shows the average RMSE vs SNR graphs for esti-
mating two coherent sources located at 40° and 60° for
the proposed method (PM_DOA) and its performance is
compared with Root-MUSIC (RM_DOA), SS_DOA [14],
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FIGURE 10. Histogram of DOA estimation using the proposed method for
three coherent sources separated by 2°, 3°, 5°, and 10°, respectively.
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FIGURE 11. RMSE vs SNR: three coherent sources estimated with a
25-element ULA located at 20°, 30°, and 40°, with 200 snapshots.

TS_DOA [9] and benchmarked against the CRB. Simulations
were performed with 25 antenna elements, 200 snapshots,
and 100 Monte Carlo runs. The proposed method outperforms
RM_DOA and SS_DOA, only TS_DOA has better perfor-
mance but which comes at a much greater cost as analyzed
above in section III.

Fig. 13 shows the average RMSE curves for three coher-
ent sources located at 10°, 30°, and 60° for the proposed
method and its performance is compared with RM_DOA,
SS_DOA [14], EE_DOA [42] and benchmarked against
the CRB. Simulation conditions remain the same as in the
case above. PM outperforms all the other methods, while
Root-MUSIC suffers from estimation failure.

Fig. 14 below shows the average RMSE curves for esti-
mation of four sources with a combination of non-coherent
and coherent signals. A pair of coherent signals are located
at (10°, 30°), while the two non-coherent sources are located
at 60° and 80° from the ULA. A performance comparison
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FIGURE 12. Performance comparison: average RMSE values for DOA
estimation of two coherent sources located at 40° and 60° with
200 snapshots.
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FIGURE 13. Performance comparison: average RMSE values for DOA
estimation of three coherent sources located at 10°, 30°, and 60° with
200 snapshots.

is made with RM_DOA, SS_DOA [14], TK_DOA [40] and
benchmarked against the CRB. Simulation conditions remain
the same as in the cases above. The proposed algorithm is
clearly superior to all the other methods, while TK_DOA
shows poor estimation accuracy.

RMSE vs CRB: 200 Snapshots, 4 sources (1 pair coherent)
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FIGURE 14. Performance comparison: average RMSE values for DOA

estimation of two non-coherent (60°, 80°) and one pair of coherent
sources(10°, 30°) with 200 snapshots.
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In the next graph (Fig. 15), the average RMSE curves
for two pairs of coherent signals are shown. The first pair
of coherent signals is located at (10°, 30°), and the other
one at (60°, 80°) from the ULA. The performance of PM is
compared with RM_DOA, SS_DOA [14], TK_DOA [40] and
benchmarked against the CRB. Simulation conditions remain
the same as in the cases above. PM outperforms all the other
methods, while TK_DOA shows poor estimation accuracy.

(2 pairs )

RMSE vs CRB: 200 h 4

RMSE / CRB (deg)

—#—TK-DOA
—%— CRB-DOA

15 20 25 30
SNR (dB)

FIGURE 15. Performance comparison: average RMSE values for
estimating two pairs of coherent sources (10°, 30°) and (60°, 80°) with
200 snapshots.

Finally, we examine the case of four coherent sources in
Fig. 16. The four coherent sources are located at 10°, 30°,
60°, and 80° from the ULA. PM outperforms all the other
methods, while Root-MUSIC suffers from estimation failure.

RMSE vs CRB: 100 MC, 100 4

—&—PM-DOA |
——RM-DOA ||
———SS-DOA
10%F —#— CRB-DOA |

RMSE / CRB (deg)

Q 5 10 15 20 25 30
SNR (dB)

FIGURE 16. Performance comparison: average RMSE values for
estimating four coherent sources located at 10°, 30°, 60°, and 80° with
200 snapshots.

The above graphs establish the effectiveness of the pro-
posed method in estimating the DOAs of multiple coherent
and non-coherent signals and also show its superior perfor-
mance when compared with the existing methods ([9], [14],
[40], [42]) over a range of simulation scenarios.

V. FPGA IMPLEMENTATION OF PROPOSED ALGORITHM
To demonstrate the suitability of the proposed algorithm
for an efficient and low cost hardware implementation,
it has been implemented on the PXIe-7993 [38] which is
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a high-performance FlexRIO FPGA module housing Xilinx
Kintex UltraScale KU11P FPGA. The implementation was
realized using high throughput LabVIEW FPGA modules
(with LabVIEW version 21.0.1f1 (64-bit)) for arithmetic
operations for estimating up to two incident sources using
a ULA with nine antenna elements (N = 4) resulting in
matrices of size 5 x 5.

The FPGA implementation presented in this section is
intended to validate the hardware friendliness, resource effi-
ciency, and real-time throughput potential of the proposed
decomposition-free algorithm. DOA estimation accuracy was
also verified on the FPGA using LabVIEW FPGA simulation
mode, as shown in Fig. 25.

A. HYBRID IMPLEMENTATION

A hybrid approach was taken for the implementation with
Steps 1 through 6 of the proposed algorithm implemented on
the FPGA and the final two steps of computing the DOAs
from polynomial rooting implemented on the Host Processor.
This model is shown in Fig. 17 below:

FPGA
Processing Core

(Proposed DOA Algorithm)

Polynomial
Coefficients
Stream Data
DMA DMA
Write FIFO Read FIFO

Write
Data Snapshots
Read

HOST CPU
(Generate Data, Compute DOAs)

z

I Host Storage I

FIGURE 17. Hybrid implementation model for the proposed algorithm.

The proposed FPGA implementation follows a pipeline
architecture consisting of six stages, as shown in Fig. 18
below. Each stage of the pipeline was created as a separate
LabVIEW virtual instrument (VI) [39]. Programming of each
of the VIs shown in Fig. 19 through Fig. 24 utilized LabVIEW
FPGA modules with fixed-point arithmetic (16-bit word,
8-bit integer), chosen for its balance of accuracy, speed, and
efficient resource usage, unlike floating-point which provides
higher accuracy but demands more FPGA resources and
reduces performance.

Received data vector at the ULA with nine antenna ele-
ments is generated by the Host Processor and written to the
DMA FIFO which in turn is read by the FPGA for further
processing. The FPGA generates the coefficients of the poly-
nomial whose roots are utilized for computing the DOAs by
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FIGURE 18. Pipeline architecture block diagram (top) and its
implementation in LabVIEW FPGA (bottom).

the Host Processor according to (21). The six stages of the
pipeline correspond to Step 1 through Step 6 of the proposed
algorithm, respectively. The final two steps in the proposed
algorithm are implemented on the Host Processor.

This hybrid design, where the FPGA performs all pre-
processing and outputs only polynomial coefficients while
the host handles root finding and DOA estimation, balances
efficiency and flexibility. The FPGA delivers fast, parallel
matrix operations with minimal data transfer, while the host
provides precision and adaptability for the sensitive root-
ing step. This approach saves FPGA resources, simplifies
updates, and leverages the host’s flexibility for accurate DOA
estimation, though it introduces some dependency on host-
side latency.

Fig. 19 shows the formation of the Toeplitz structure matrix
from the received data vector at the ULA. It is implemented
without the need for any arithmetic operations.

Input Data Toeplitz Matrix

=g
=

=
=0

FIGURE 19. LabVIEW FPGA schematic for constructing the Toeplitz
structure matrix as in (8) and (9).
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Fig. 20 below shows the LabVIEW FPGA implementation
of the operation to convert the complex-valued data matrix
Y (of size 5 x 5) to a real-valued matrix IA/', as in (12).
It converts all complex-valued elements to real-valued ones
in parallel, consuming 25 ADD modules and requiring only
2 clock cycles for the conversion.

Matrix C El ]

MatrixR

st

vl e e v el e e v e el S e e v A

FIGURE 20. LabVIEW FPGA schematic for matrix conversion from
complex to real as shown in (12).

Fig. 21 below shows the LabVIEW FPGA implemen-
tation of Step 4 and Step 5 of the proposed algorithm
using Add/Subtract, Multiply/Divide, and Negation modules
consuming 33 clock cycles.

Fig. 22 shows a very efficient implementation for
computing Gn as in (19), requiring only 11 Negation
and 11 Add/Subtract modules and executing in only 2 clock
cycles. Fig. 23 illustrates how the product WWH is imple-
mented as in (20) with only 6 Multiply and 4 Negation
modules and can be executed in 2 clock cycles.

Fig. 24 shows the implementation for computing the coef-
ficients of Gn. The coefficients are computed by finding the
sum of each diagonal of the matrix Gn, ordered from the
bottom-left diagonal to the top-right diagonal. These coeffi-
cients are required for finding the roots of the polynomial Gn
to finally compute the DOAs of the incident signals on the
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FIGURE 21. LabVIEW FPGA schematic for matrix partitioning stage of the
algorithm and formation of matrix W.
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FIGURE 22. LabVIEW FPGA schematic for computing Gn as in (19).
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FIGURE 23. LabVIEW FPGA schematic for computing W*WH as in (20).

Host Processor and display them on the front panel GUI as
seen in Fig. 25.

A GUI built for LabVIEW FPGA simulation is shown
below in Fig. 25 which depicts simulation results of running
the proposed algorithm on the FPGA as well as the Host
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FIGURE 24. LabVIEW FPGA schematic for computing the coefficients of
the polynomial Gn.

DOA ESTIMATION WITH 9 ELEMENT ULA |

FPGA Esti Host Processor Esti
DOA_Estimate (ProR)  pyan St DOA Estimate (55)
29.2426 1.12068 Mean Standard Dev
DoaE1 29.3099 DOAE1 129.8448 5924 0043788
Mean Standard Dev Mean Standard Dev
DOAE2 |59.7156 593611 1351 POAE2 §59.9258 60.0149 0.0810663
DOA Estimate (Prop)
OOA Estmate 55) i ean -
DoAE1 130.7571 28,1571 145224 DOAET 130.0484 29988 00642116
Mean Dev
Mean Standard Dev Fanged
poaE2 159.1931 e s DOAEZ 1599903 600242 0.0773967
Simulation | Swehon esos  Soocel  Sowcez SR m Timed Out?
Parameters | v '% g g - L g2 °

FIGURE 25. GUI for LabVIEW FPGA simulation of proposed algorithm.

Processor for two sources placed at 30° and 60° respectively
from the ULA with SNR = 20 dB. The simulation is run with
100 snapshots and repeated for 10 iterations.

B. FPGA RESOURCE CONSUMPTION AND LATENCY

Table 3 lists the number of clock cycles consumed and
arithmetic modules required in implementing each of the
LabVIEW FPGA VIs in the pipelined execution of the
proposed algorithm. It is clear from this table that the pro-
posed algorithm is efficient in terms of computation time
and resources consumption as it takes only 44 clock cycles
and requires very few arithmetic modules relying exclusively
on elementary arithmetic operations. By avoiding higher-
cost operations such as complex-valued multiplications and
square-root, etc., the new approach reduces computational
demand and enhances overall efficiency.

Resource consumption data extracted from a successful
FPGA compilation report of the proposed algorithm is shown
in the Table 4 below. The compilation tool employed is Xilinx
Vivado 2019.1 (64-bit). Table 4 also provides a quantita-
tive comparison of FPGA resource utilization and latency
between the proposed method (PM) and existing DOA
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TABLE 3. Clock cycles and arithmetic operations for proposed DOA.

Ol | opme T o aee | o | as

cvcles Size

1 Toeplitz 5%5 0 0 0 0  Neg- Negation

2 CRead 55 0 0 0 25 M- Multplication
33 Partn s 8 4 12 6 AS-AddSubtract
2 WxWH 32 0 4 6 | o | DIV Do

2 Gn 5 0 11 0 11

4 Coeff 5 0 4 0 20

14 Total g | 23 | 18 | &

estimation implementations reported in [43], [44], [45], and
[46] (which deploy an 8-element ULA whereas PM deploys
a 9-element ULA).

TABLE 4. FPGA device utilization and latency.

Device

Utilization PM [43] [44] [45] [46]
Total Slices 11615 NA NA NA NA
Slice Registers 72248 27700 95185 28160 30200
Slice LUTs 61397 34200 84658 49601 48100
Block RAMs 83 55 7 23 117
DSP48s 56 268 1311 216 96
Latency 44 15900 5396 7800 25500
(clock cycles)

Latency (us,

100 MHz clock) 0.44 159 53.96 78 255

The results presented in Table 4 demonstrate that PM
achieves a favorable balance between resource usage and
processing speed.

e Slices, Registers, and LUTs: PM requires 11,615 slices,
while comparative data for slices is not reported in
[43], [44], [45], and [46]. For registers and LUTs,
PM consumes more registers and LUTs than [43], [45]
and [46] but lower than [44]. This reflects the cost of
implementing decomposition-free Toeplitz processing
while still remaining competitive in overall logic usage.

e Block RAMs (BRAMs): PM uses 83 BRAMs, which
is higher than [43], [44], and [45], but significantly
lower than [46]. The additional BRAM demand in PM
comes from structured data buffering, yet it remains
manageable for modern FPGA architectures.

e DSP48s: A major strength of PM is its very low DSP
consumption (56), which is drastically lower than [43],
[44], and [45], and even [46]. This efficiency makes PM
particularly attractive for platforms with constrained
DSP availability, such as mid-range or embedded-class
FPGA:s.

e Latency: PM achieves a latency of only 44 clock cycles,
outperforming [43], [44], [45], and [46]. This dramatic
reduction in latency highlights the decomposition-free
architecture’s suitability for real-time DOA estima-
tion in time-sensitive applications. Latency values in
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seconds is also calculated considering a 100 MHz clock
and listed in the table.

Overall, the proposed method (PM) exhibits exceptionally
low latency and DSP usage compared to existing FPGA-
based DOA implementations, while maintaining competitive
levels of registers, LUTs, and BRAMs. These character-
istics position PM as a highly efficient, hardware-friendly
solution for real-time DOA estimation in both coherent and
non-coherent source environments.

C. COMPUTATION TIME IN HYBRID MODE
In this section, we calculate the computation time of the
proposed algorithm in both hybrid as well as fully soft-
ware mode, while considering the following simulation
parameters:
e K = 2 sources, 100 snapshots, 9 antenna elements,
100 iterations

With a clock speed of 100 MHz for PXIe-7993 FPGA, the
execution time for computing the coefficients of the polyno-
mial for the proposed algorithm averaged over 100 iterations
was found to be ~0.53 us. The execution time for computing
the DOAs on the Host Processor (3 GHz, 16 GB RAM) by
polynomial rooting of Gn averaged over 100 iterations was
found to be ~61 us. The net execution time is shown in
Table 5 below.

The execution time of the proposed algorithm when
executed entirely on the Host Processor under the same sim-
ulation conditions was found to be ~1.03 ms.

The hybrid implementation (FPGA + Host) is ~17 times
faster than the entirely software one. In contrast, the execution
time for TS_DOA [9] is ~91 ms which makes the proposed
method ~88 times faster when executed entirely on the Host
Processor and ~1481 times faster when executed in hybrid
mode.

TABLE 5. Computation time for proposed method in hybrid mode.

Execution  Proposed Method (PM)  TS_DOA
stage Hybrid Software Software
FPGA 0.44 ps NA NA

Host Proc. 61 us 1.03 ms 91 ms

Total 61.44 ps

1.03 ms 91 ms

The FPGA portion of PM requires only 44 clock cycles
(0.44 ps), making it by far the fastest among all compared
methods. Although polynomial rooting and DOA computa-
tion are performed on the Host Processor, leading to a total
latency of 61.44 us, the hybrid design still outperforms [43]
and [46], and remains competitive with [44] and [45].

D. HYBRID IMPLEMENTATION: SOME OBSERVATIONS

A key advantage of the proposed hybrid implementation lies
in its scalability when applied to larger arrays and multiple
source scenarios. Pure FPGA-only approaches often suffer
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from rapid growth in resource demand as the number of
antenna elements and incident sources increases. In par-
ticular, eigenvalue decomposition (EVD), singular value
decomposition (SVD), or matrix inversions used in classical
FPGA-based designs have computational complexity on the
order of O(N?3) and require substantial FPGA resources such
as DSP48s, LUTs, and block RAMs. As a result, the latency
and resource usage of these methods scale poorly, making
them impractical for large-scale ULAs or scenarios involving
many sources.

In contrast, the hybrid method is specifically designed
to minimize FPGA workload by offloading the most com-
putationally intensive tasks (polynomial rooting and DOA
computation) to the host processor. The FPGA fabric is
responsible only for lightweight, highly parallelizable opera-
tions, such as covariance-free Toeplitz matrix formation and
basic arithmetic, whose complexity scales as O(NL), where
N is the number of array elements and L is the number of
snapshots. This ensures that FPGA resource consumption
grows linearly with the array size, avoiding saturation even
on mid-range devices.

The final stage, involving polynomial rooting and angle
computation, scales with the number of antenna elements
and has complexity on the order of O(N?). Importantly, this
step is executed on the host processor, which can leverage
optimized numerical libraries and floating-point units that are
far better suited for handling higher-order polynomials than
FPGA hardware. This division of labor provides two clear
scalability benefits:

e Resource Efficiency: Since decomposition-heavy tasks
are avoided on the FPGA, the method requires far
fewer LUTs, DSP slices, and block RAMs compared
to existing approaches, making it feasible for larger
ULAs.

e Flexible Expansion: As K increases, the rooting step
grows in cost, but because it runs on the host CPU, scal-
ability is achieved without requiring additional FPGA
resources.

Therefore, the hybrid design combines the low-latency and
deterministic parallelism of FPGA with the computational
flexibility of the host, ensuring that the overall system can
handle larger numbers of antenna elements and impinging
sources while keeping both FPGA utilization and latency
under control. This approach is well-suited for practical real-
time implementation scenarios, although certain bottlenecks
still need to be addressed.

The main bottleneck of the hybrid implementation stems
from the reliance on the host processor for polynomial rooting
and DOA computation, which introduces an additional 61 pus
latency compared to the FPGA-side latency of only 0.44 ps.
Data transfer overhead between FPGA and host can further
impact timing. Pure FPGA designs avoid this transfer delay
and offer deterministic execution, but they incur high resource
consumption and limited scalability due to the decomposition
and rooting stages, which demand extensive DSPs, BRAMs,
and long latencies. Thus, hybrid designs trade determinism
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for efficiency, flexibility, and scalability, while pure FPGA
approaches face challenges in supporting larger arrays and
higher source counts.

A second challenge is the effect of host-side execution
on overall system throughput. When processed serially, the
throughput is limited to ~16.3k estimates per second, far
below the FPGA’s potential. However, this bottleneck can be
alleviated by employing pipelining, batching, and paralleliza-
tion strategies such as double buffering, vectorized rooting,
or distributing tasks across CPU cores and GPUs. These
optimizations can significantly improve throughput without
increasing FPGA complexity, making the hybrid method both
resource-efficient and scalable for practical real-time DOA
estimation.

VI. CONCLUSION AND FUTURE WORK

This paper presented a decomposition-free direction-of-
arrival (DOA) estimation method that exploits the inherent
Toeplitz structure of uniform linear arrays (ULAs) and elimi-
nates the need for matrix decompositions such as EVD, SVD,
or QR. By directly constructing a structured Toeplitz matrix,
transforming it into a real-valued compound form, and apply-
ing polynomial rooting for DOA estimation, the proposed
approach achieves low arithmetic complexity and avoids the
computational bottlenecks of subspace-based techniques.

A hybrid hardware-software implementation was devel-
oped, wherein all preprocessing and matrix construction steps
were executed on the FPGA while polynomial rooting and
final DOA computation were performed on the host proces-
sor. This architecture demonstrated very low FPGA resource
utilization, fast execution, and robustness to coherent as well
as non-coherent sources. The hybrid design achieved a total
latency of 61.44 ps, with only 0.44 us incurred on the FPGA
and the remainder on the host processor, thereby offering a
highly efficient trade-off between hardware complexity and
processing speed.

In summary, the high estimation accuracy of the pro-
posed method for both non-coherent and coherent signals
across diverse conditions, and its decomposition-free struc-
ture combined with the hybrid execution model makes
the proposed method particularly well-suited for real-time,
resource-constrained applications such as wireless com-
munications, radar, and electronic warfare systems. Future
work will incorporate real-time experimental characterization
under challenging real-world conditions as well as focus on
extending the proposed approach to non-uniform and sparse
array geometries.
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