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Abstract
This study employs K-means clustering to
analyze long-term cardiovascular complications
in COVID-19 patients through ECG parameters,
demographics, comorbidities, and hospitalization
data. Three distinct clusters emerged: Cluster 0
(moderate heart rate variability/ICU admissions),
Cluster 1 (lower variability/admissions), and
Cluster 2 (higher variability/admissions, indicating
elevated risk). Bootstrap validation confirmed
model robustness, supported by high silhouette
scores and consistent cluster labels. The novel
integration of multimodal data with machine
learning revealed hidden cardiovascular outcome
patterns, demonstrating clinical utility for risk
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stratification. Findings underscore the value of
clustering techniques in personalizing post-COVID
care and optimizing resource allocation for
high-risk survivors.
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1 Introduction
1.1 Background
The COVID-19 pandemic, caused by the SARS-CoV-2
virus, has had a profound impact on global health,
leading to significant morbidity and mortality [1].
While the respiratory complications of COVID-19 have
been widely studied, emerging evidence suggests that
the virus also affects the cardiovascular system [2–
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5]. COVID-19 can lead to a range of cardiovascular
complications, including myocarditis, arrhythmias,
acute coronary syndrome, and thromboembolic
events [2]. These complications can occur both
in patients with pre-existing cardiovascular disease
(CVD) and those without prior cardiovascular
conditions [6].
Electrocardiogram (ECG) parameters have been used
extensively to monitor and diagnose cardiovascular
conditions. Changes in ECG readings can indicate
various cardiac events and are critical in the
management of patients with cardiovascular
diseases [7–9]. However, the long-term cardiovascular
outcomes of COVID-19 patients, particularly those
reflected in ECG changes, remain underexplored.
Understanding these long-term effects is crucial for
developing effective post-COVID-19 care strategies
and improving patient outcomes.

1.2 Objective
The primary objective of this study is to identify
patterns in long-term cardiovascular complications
among COVID-19 patients using clustering algorithms.
Specifically, the study aims to analyse ECG parameters,
demographic information, comorbidities, and
hospitalization details of COVID-19 patients; utilize
clustering techniques to identify distinct groups
of patients with similar long-term cardiovascular
outcomes; and compare the identified clusters to
understand the impact of COVID-19 on cardiovascular
health over the long term, both in patients with and
without pre-existing CVD.

1.3 Significance of the Study
This study addresses a critical gap in the current
understanding of COVID-19’s long-term effects on
cardiovascular health. The significance of this research
lies in several key areas:
In terms of the state of the art, current research has
primarily focused on the acute effects of COVID-19 on
the cardiovascular system, with limited attention to
long-term outcomes. While recent literature has begun
to recognize the importance of post-acute sequelae of
SARS-CoV-2 infection (PASC), comprehensive studies
integrating ECG data and long-term cardiovascular
outcomes remain sparse. Methodologically, previous
research has relied on traditional statistical methods
to analyse cardiovascular outcomes. In contrast,
this study leverages advanced machine learning
techniques, specifically clustering algorithms, to
uncover hidden patterns in the data that might be

missed by conventional analyses. This represents a
significant methodological advancement in the field.
The study’s novelty lies in several areas. Firstly,
it integrates diverse data types, including ECG
parameters, demographic data, comorbidities, and
hospitalization details, providing a holistic view
of each patient’s health status. The application of
clustering algorithms to identify patient subgroups
based on long-term cardiovascular outcomes is
particularly novel in this context. This approach
allows for the discovery of distinct patterns and
subpopulations that could inform personalized
treatment strategies. Additionally, by focusing on
long-term cardiovascular complications, the study
extends beyond the immediate impacts of COVID-19,
contributing valuable insights into the chronic aspects
of the disease. This long-term focus is a key aspect
that sets this research apart from existing studies.
Clinically, the implications of this study are significant.
The findings can help clinicians identify high-risk
patients who may benefit from more intensive
monitoring and tailored interventions. This can
lead to improved patient management and outcomes.
Furthermore, insights from the clustering analysis
can inform healthcare policies and resource allocation,
ensuring that long-term care strategies are optimized
for COVID-19 survivors. Finally, this study sets the
stage for future research exploring targeted therapies
and preventive measures for long-term cardiovascular
complications in COVID-19 patients. By highlighting
these areas, the research underscores the importance
of addressing the chronic health impacts of COVID-19
and provides a foundation for ongoing scientific
inquiry and clinical practice improvement.
This research not only advances the understanding of
COVID-19’s long-term cardiovascular effects but also
introduces innovative methodologies and integrated
data analysis to uncover actionable insights that can
improve patient outcomes and healthcare strategies.

2 Literature Review
2.1 COVID-19 and Cardiovascular Complications
The COVID-19 pandemic has revealed that
SARS-CoV-2, the virus responsible for the disease,
has significant impacts beyond the respiratory
system, extending to the cardiovascular system.
Several mechanisms have been proposed to explain
the cardiovascular complications associated with
COVID-19. These include direct viral invasion of
cardiac tissue, systemic inflammation, thrombogenesis,
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and immune-mediated injury [10–12].
Acute cardiovascular manifestations in
COVID-19 patients include myocarditis, acute
coronary syndromes, arrhythmias, and venous
thromboembolism [4]. Studies have reported elevated
biomarkers of myocardial injury such as troponin
and natriuretic peptides in patients with severe
COVID-19, indicating myocardial damage [13–15].
Additionally, autopsy studies have found evidence
of viral particles in cardiac tissue, suggesting direct
myocardial infection [16].
Long-term cardiovascular complications are becoming
increasingly apparent as more patients recover from
the acute phase of COVID-19. These complications
include persistent myocardial inflammation, fibrosis,
and ongoing arrhythmias, which may result in chronic
heart failure or other long-term cardiac conditions [17,
18]. This has led to a growing interest in monitoring
ECG changes as a non-invasive method to detect and
manage these complications over time.

2.2 Clustering Algorithms in Medical Research
Clustering algorithms are unsupervised machine
learning techniques used to group data points into
clusters based on their similarities. These algorithms
are particularly useful in medical research for
identifying patterns and subgroups within complex
datasets, enabling personalized treatment, and
improving disease management strategies. Several
clustering algorithms have been employed in medical
research, including K-means, hierarchical clustering,
DBSCAN (Density-Based Spatial Clustering of
Applications with Noise), and Gaussian Mixture
Models (GMM). Each algorithm has its strengths and
weaknesses, depending on the nature of the data and
the specific research objectives [19–23].
K-means clustering is one of the most widely used
algorithms due to its simplicity and efficiency. It
partitions the data into K clusters by minimizing the
variance within each cluster [24–26]. Hierarchical
clustering, on the other hand, builds a tree-like
structure of nested clusters, which can be useful for
understanding the relationships between clusters [27–
30]. DBSCAN is effective for identifying clusters of
varying shapes and sizes and is particularly robust to
noise [31–33].
Despite the extensive use of clustering algorithms
in medical research, several gaps remain in current
approaches. Traditional methods, such as K-means
and hierarchical clustering, often assume that clusters

are spherical and of similar sizes, which may not
accurately capture the complexity and variability
present in patient data. These limitations can result
in less effective identification of distinct patient
subgroups, particularly in datasets with noisy or
non-linear relationships. Furthermore, most existing
studies on clustering algorithms in medical research
focus on short-term outcomes or specific conditions,
neglecting the integration of long-term follow-up data,
such as the chronic effects of diseases like COVID-19
on cardiovascular health. Additionally, many studies
rely heavily on isolated data types, such as imaging
or biomarkers, without leveraging the full potential of
integrated datasets combining clinical, demographic,
and physiological parameters. Addressing these
gaps through more sophisticated clustering methods,
such as Gaussian Mixture Models or density-based
algorithms, and using comprehensive datasets could
significantly enhance the predictive power and clinical
utility of clustering models in personalized medicine.

2.3 Previous Studies on Long-term Effects of
COVID-19

Research on the long-term effects of COVID-19,
often referred to as "long COVID" or post-acute
sequelae of SARS-CoV-2 infection (PASC), has rapidly
evolved. Long-term symptoms can affect multiple
organ systems, including the cardiovascular system,
leading to ongoing morbidity among survivors.
Several studies have explored the cardiovascular
sequelae of COVID-19. For instance, a study
by Puntmann et al. [18] found that 78% of
recently recovered COVID-19 patients had cardiac
involvement onMRI, and 60% had ongoingmyocardial
inflammation, irrespective of pre-existing conditions.
Another study by Huang et al. [17] reported that
6 months after acute COVID-19 illness, patients
experienced symptoms such as fatigue, muscle
weakness, and sleep difficulties, with some showing
signs of cardiovascular abnormalities.
Despite these findings, there is a scarcity of
comprehensive studies integrating ECG data
and long-term cardiovascular outcomes. Most
existing research focuses on isolated biomarkers or
imaging findings without leveraging the potential of
machine learning to uncover hidden patterns in the
data [13, 14].
This study advances the state of the art by integrating
diverse data types, including ECG parameters,
demographic data, comorbidities, and hospitalization
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details, to provide a comprehensive analysis of
long-term cardiovascular complications in COVID-19
patients. The novelty lies in the application of
clustering algorithms to identify distinct patient
subgroups with similar cardiovascular outcomes.
Unlike previous studies that often use traditional
statistical methods, our approach leverages the power
of machine learning to uncover hidden patterns and
provide actionable insights for personalized patient
care.
By focusing on long-term cardiovascular health, this
research addresses a critical gap in current knowledge
and offers a novel perspective on managing the
chronic aspects of COVID-19. The use of clustering
to identify patient subgroups represents a significant
methodological advancement, highlighting the
potential for personalized medicine in post-COVID-19
care.

3 Methodology
3.1 Data Collection
This study was conducted as a cross-sectional,
single-centre analysis involving 1000 patients who
tested positive for COVID-19 via PCR. The data
collection spanned from February 2020 to November
2021. Patients were categorized based on their
admission units and survival outcomes, specifically
grouping them into those who were discharged from
the hospital (survivors) and those who did not
survive (non-survivors). The primary objective was to
determine the prognostic value of initial ECG readings
upon hospital admission, adjusting for other variables.
Patient Demographics and Clinical Data:

• Sample Size and Demographics: The study
included 1000 patients with a mean age of 55.6
± 16.2 years. Among these patients, 52% were
male.

• Outcomes: During hospitalization, 149 patients
died, representing the non-survivor group.

• Admission Units: Patients were grouped based
on the units to which they were admitted, which
included regular wards and the Intensive Care
Unit (ICU).

Clinical and ECG Data Collection:

• ECGParameters: ECG parameters were recorded
at the time of hospital admission. Key ECG
findings included sinus tachycardia, atrial and
ventricular premature beats, sinus bradycardia,

and atrial fibrillation. The prevalence of these
conditions was 28.6%, 5.6%, 3.9%, and 2.1%,
respectively.

• Comorbidities: Data on comorbid conditions
such as diabetes (p=0.002), hypertension
(p=0.018), ischemic heart disease (p=0.004), and
cancer (p<0.001) were collected.

• Survival Data: Survival outcomes were tracked,
categorizing patients into survivors and
non-survivors.

Predictors and Outcomes:

• ICU Admission and Mortality Predictors: The
study aimed to identify predictors of ICU
admission and in-hospital mortality using
univariate analysis and logistic regression
models.

• ECG Findings and Mortality: Among ECG
findings, tachycardia, low voltage QRS, ST-T
changes, and dysrhythmia were associated with
an increased risk of mortality. However, logistic
regression analysis identified gender (OR 1.89,
95% CI: 1.2 to 2.9, p=0.004), age (OR 1.03, 95% CI:
1.02 to 1.05, p<0.001), and initial tachycardia (OR
1.02, 95%CI: 1.01 to 1.03, p<0.001) as independent
predictors of in-hospital mortality.

3.2 Dataset Description
The dataset is designed to analyse and predict
patient outcomes based on various medical and
clinical parameters. The dataset contains medical
and demographic information of patients who were
monitored for cardiovascular health during the
COVID-19 pandemic. The variables include details on
patient characteristics, underlying health conditions,
clinical parameters, and specific cardiacmeasurements.
This dataset is particularly useful for studying the
long-term cardiovascular effects of COVID-19, as well
as identifying potential subgroups of patients with
similar health outcomes using clustering algorithms.
The detailed characteristics and variables in the dataset
are outlined in Table 1.

3.3 Data Preprocessing
Effective data preprocessing is crucial for ensuring the
accuracy and reliability of the clustering analysis. The
preprocessing steps involved handling missing values,
encoding categorical variables, and normalizing
numerical features. These steps were essential to
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Table 1. Features of the dataset along with their descriptions.
Feature Description
LoQRS (L) Location of the QRS complex in the electrocardiogram (ECG).
LoQRS (P) Position of the QRS complex in the ECG.
LoQRS General attribute related to the QRS complex in the ECG.
SEX Gender of the patient.
Death Status of the patient at the time of discharge; ’D’ for deceased and ’L’ for alive.
age Age of the patient.
DM Indicates whether the patient has diabetes mellitus (Yes/No).
HTN Indicates whether the patient has hypertension (Yes/No).
IHD Indicates whether the patient has ischemic heart disease (Yes/No).
CANCER Indicates whether the patient has cancer (Yes/No).
CHF Indicates whether the patient has congestive heart failure (Yes/No).
CKD Indicates whether the patient has chronic kidney disease (Yes/No).
ASTMA/COPD Indicates whether the patient has asthma or chronic obstructive pulmonary

disease (Yes/No).
SH Indicates whether the patient has a surgical history (Yes/No).
SatO2 (%) Blood oxygen saturation level.
BP (mmHg) Blood pressure in millimetres of mercury.
PR Pulse rate.
BT Body temperature.
RR Respiratory rate.
Duration Duration of hospitalization in days.
ICU ORWARD Indicates whether the patient was in the ICU or ward.
Rhythm Cardiac rhythm (e.g., Normal sinus, sinus tachycardia, atrial fibrillation).
Axis (L/R/NL) Cardiac axis deviation (Left/Right/Normal).
QT (msec) QT interval in milliseconds, normal range is 350-450 milliseconds.
QRS (msec) QRS duration in milliseconds, normal range is 80-100 milliseconds.
LBBB/RBBB/IVCD/hemi Block Indicates the presence of left bundle branch block, right bundle branch block,

intraventricular conduction delay, or hemiblock.
ST-T change Indicates changes in the ST segment or T wave in the ECG.
arrhythmia Indicates whether the patient has any arrhythmia.

prepare the data for clustering and to ensure that the
resulting clusters were meaningful and interpretable.

3.3.1 Handling Missing Values
Handling missing values is a critical step in data
preprocessing, particularly in medical datasets where
missing information can significantly impact analysis
outcomes [34]. In this study, we encountered missing
values in both numerical and categorical columns.
• Numerical Columns: Missing values in

numerical columns, such as PR, were imputed
using the mean of the respective columns. This
approach ensures that the central tendency of the
data is preserved without introducing significant
bias.

• Categorical Columns: Missing values in
categorical columns, such as LoQRS(P),
ASTMA/COPD, and ICU OR WARD, were
imputed using the most frequent value (mode) of
each column. This method is particularly effective
in preserving the distribution of categorical

variables.
By addressing missing values appropriately, we
ensured that the dataset was complete and ready for
subsequent analysis.

3.3.2 Encoding Categorical Variables
Many of the features in our dataset were categorical,
including SEX, DM, HTN, and various ECG-related
parameters. To enable the use of these categorical
variables in clustering algorithms, which require
numerical input, we applied one-hot encoding.
• One-Hot Encoding: This technique converts

categorical variables into a series of binary
variables. For instance, the SEX column with
values ’Male’ and ’Female’ was transformed into
two columns: SEX_Male and SEX_Female. Each
original category becomes a separate column,
with binary indicators (0 or 1) representing the
presence or absence of the category.

One-hot encoding allows us to retain the categorical
information in a numerical format, facilitating its use in
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clustering algorithms without distorting the inherent
relationships between data points.

3.3.3 Normalizing Numerical Features
Normalization of numerical features is essential to
ensure that all variables contribute equally to the
clustering process. Without normalization, features
with larger ranges can disproportionately influence
the clustering outcome.
• Standardization: We applied standardization

to normalize the numerical features, including
age, PR, QT(msec), and RR. Standardization
transforms the data to have a mean of 0 and a
standard deviation of 1, which helps in stabilizing
the numerical range of features.

The formula used for standardization is:

Z =
X − µ

σ
(1)

where X is the original value, µ is the mean of the
column, and σ is the standard deviation of the column.
This step ensures that each feature has a comparable
scale, thus preventing features with larger scales from
dominating the clustering process. The preprocessing
techniques employed in this study are well-established
in data science and machine learning. Standard
methods such as mean imputation for numerical
data, mode imputation for categorical data, one-hot
encoding, and standardization are commonly used in
medical data preprocessing. The study’s novelty is not
in the individual preprocessing techniques but in their
comprehensive application to a diverse set of features.
These include ECG parameters, demographic data,
and comorbidities, preparing the data for advanced
clustering algorithms.
This study integrates a wide range of features,
from ECG readings to hospitalization details,
providing a holistic view of patient data. This
comprehensive preprocessing approach ensures all
relevant information is preserved and utilized in
the clustering analysis. While the preprocessing
techniques themselves are standard, their application
to study long-term cardiovascular outcomes in
COVID-19 patients is novel. This focus, combined
with rigorous preprocessing steps, enables a deeper
understanding of the chronic impacts of COVID-19 on
cardiovascular health.
By meticulously preprocessing the data, the study sets
the stage for accurate and insightful clustering analysis,

ultimately contributing to the understanding of
long-term cardiovascular complications in COVID-19
patients.

3.4 Exploratory Data Analysis (EDA)
Exploratory Data Analysis (EDA) was conducted
to understand the distribution of features, examine
relationships between them, and identify and address
outliers. This process is crucial for ensuring
data quality and deriving meaningful insights from
subsequent analyses.

3.4.1 Feature Distribution
The first step in EDA was to analyse the distribution
of key features. This involved visualizing the
distributions of numerical and categorical variables to
identify central tendencies, variabilities, and potential
anomalies.
• Numerical Features: Histograms and box plots
were used to visualize the distribution of
numerical features such as age, ECG parameters
(e.g., PR interval, QT interval, RR interval), and
clinical measures. These visualizations helped
identify the presence of skewness, kurtosis, and
any unusual patterns in the data.

• Categorical Features: Bar plots were used
to display the distribution of categorical
variables, including comorbidities (e.g., diabetes,
hypertension, ischemic heart disease) and
outcomes (e.g., ICU admission, in-hospital
mortality). The frequency of each category
provided insights into the prevalence of these
conditions and outcomes in the study population.

Figure 1 illustrates the distribution of the ’age’ feature
within the dataset. The histogram on the left depicts
the frequency distribution of age, showing a roughly
normal distributionwith the highest frequency around
the mean. The box plot on the right provides a
summary of the age distribution, including themedian
(line within the box), the interquartile range (IQR),
and the presence of any outliers. The whiskers
represent the range of values within 1.5 times the IQR
from the quartiles, highlighting the spread of age data
within the study population.
Figure 2 displays the distribution of the ’SatO2 (%)’
feature within the dataset. The histogram on the left
shows the frequency distribution of oxygen saturation
levels, revealing a right-skewed distribution with a
peak near 1. The box plot on the right provides a
summary of the oxygen saturation data, including
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Figure 1. Distribution of the ’age’ feature using Histograms
and Box plots.

the median (line within the box), the IQR, and the
identification of outliers. The whiskers extend to
the smallest and largest values within 1.5 times the
IQR from the quartiles, highlighting the spread and
presence of extreme values in the dataset.

Figure 2. Distribution of the ’SatO2 (%)’ feature using
Histograms and Box plots.

Figure 3 presents the distribution of the ’PR’ feature
within the dataset. The histogram on the left depicts
the frequency distribution of PR intervals, showing
a left-skewed distribution with the highest frequency
around the mean. The box plot on the right provides a
summary of the PR interval data, including themedian
(line within the box), the IQR, and the presence of any
outliers. The whiskers represent the range of values
within 1.5 times the IQR from the quartiles, indicating
the spread and any extreme values in the dataset.
Figure 4 displays the distribution of the ’BT’ feature
within the dataset. The histogram on the left shows the
frequency distribution of BT values, indicating a sharp
peak close to zero. The box plot on the right provides
a summary of the BT data, including the median
(line within the box), the IQR, and the presence of
several outliers. The whiskers represent the range of
values within 1.5 times the IQR from the quartiles,

Figure 3. Distribution of the ’PR’ feature using Histograms
and Box plots.

highlighting the spread and any extreme values in the
dataset, with some outliers noted far from the central
distribution.

Figure 4. Distribution of the ’BT’ feature using Histograms
and Box plots.

Figure 5 presents the distribution of the ’RR’ feature
within the dataset. The histogram on the left illustrates
the frequency distribution of RR intervals, showing a
left-skewed distribution with a high frequency around
the mean. The box plot on the right summarizes
the RR interval data, including the median (line
within the box), the IQR, and the identification of
outliers. The whiskers extend to the smallest and
largest values within 1.5 times the IQR from the
quartiles, highlighting the spread and any extreme
values in the dataset.
Figure 6 illustrates the distribution of the ’QT (msec)’
feature within the dataset. The histogram on the
left shows the frequency distribution of QT intervals,
displaying a roughly normal distribution with a peak
around the mean. The box plot on the right provides a
summary of theQT interval data, including themedian
(line within the box), the IQR, and the identification
of outliers. The whiskers extend to the smallest and
largest values within 1.5 times the IQR from the
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Figure 5. Distribution of the ’RR’ feature using Histograms
and Box plots.

quartiles, highlighting the spread and presence of
extreme values in the dataset.

Figure 6. Distribution of the ’QT (msec)’ feature using
Histograms and Box plots.

3.4.2 Feature Relationships
To understand the relationships between different
features, we conducted pairwise correlation analyses
and visualized these relationships using pair plots and
correlation matrices.
• Correlation Analysis: Pearson and Spearman

correlation coefficients were calculated for pairs
of numerical features to assess the strength and
direction of linear and monotonic relationships,
respectively. The correlation matrix was
visualized using a heatmap, where stronger
correlationswere highlighted, indicating potential
multicollinearity or feature dependencies.

• Pair Plots: Pair plots (scatter plot matrices)
were used to visualize relationships between
numerical features and identify patterns, clusters,
or trends that might suggest interactions between
variables. This was particularly useful for
identifying nonlinear relationships and potential
confounders.

Figure 7 presents a pair plot of key features in the
dataset, showcasing scatter plots, histograms, and
kernel density estimates (KDE) for each pair of
variables. The features included in the plot are
R, age, SatO2, PR, BT, RR, and QT. The diagonal
elements show the distribution of each individual
feature through histograms and KDEs, while the
off-diagonal elements display scatter plots illustrating
the relationships between pairs of features.

Histograms and KDEs on the Diagonal:

• R: Exhibits a uniform distribution, as indicated by
the flat histogram and KDE.

• Age: Displays a roughly normal distribution
with a peak around the mean, highlighting the
central tendency and variability within the study
population.

• SatO2: Shows a right-skewed distribution,
indicating most patients have high oxygen
saturation levels with a long tail of lower values.

• PR: Presents a left-skewed distribution, with a
significant number of values clustered around the
mean and a tail extending to higher values.

• BT: Demonstrates a highly peaked distribution
near zero, suggesting limited variability in body
temperature measurements.

• RR: Similar to PR, the RR intervals exhibit
a left-skewed distribution, with most values
concentrated around the mean.

• QT: Reveals a roughly normal distribution
with some outliers, indicating variability in QT
intervals among patients.

Scatter Plots on the Off-Diagonal:

• The scatter plots highlight relationships between
pairs of features. For example:

– Age vs. SatO2: Shows a dispersed pattern
with no clear linear relationship, indicating
that age and oxygen saturation levels are not
strongly correlated.

– PR vs. RR: Displays a scattered relationship,
suggesting some degree of variability but no
strong linear correlation.

– QT vs. RR: The plot shows a spread of
values, indicating that QT intervals and
RR intervals do not have a strong linear
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Figure 7. Relationships between features using pair plots and correlation matrices. These visualizations help identify
potential interactions and dependencies among features such as age, PR, RR, and QT(msec).

relationship but might still interact in a
non-linear fashion.

• The scatter plots also help identify clusters or
patterns in the data. For instance, the SatO2 vs.
BT plot shows distinct bands of points, suggesting
possible subgroupings or measurement artifacts.

Figure 7 effectively highlights the variability and
distribution of each feature and the relationships
between them. The presence of outliers is evident in

several plots, such as SatO2 and QT, which should
be considered in further analysis. The overall layout
helps in visualizing potential multicollinearity and
interactions between different clinical parameters,
which can inform the subsequent clustering analysis
and feature selection processes. This pair plot
provides a comprehensive overview of the distribution
and interrelationships of key clinical features in the
dataset. The visualizations facilitate the identification
of patterns, outliers, and potential correlations, which
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are crucial for understanding the dataset’s structure
and guiding further analysis.

3.4.3 Outlier Detection and Removal
Identifying and handling outliers is crucial for
ensuring that the analysis is not unduly influenced
by extreme values, which can distort results and lead
to incorrect conclusions [35–41].
• Outlier Detection: Box plots were used initially

to visually identify outliers in numerical features.
More formally, the IQR method was applied,
where values lying beyond 1.5 times the IQR
from the first and third quartiles were flagged
as potential outliers.

• Outlier Analysis: Each identified outlier was
examined to determine whether it represented a
data entry error, ameasurement anomaly, or a true
extreme value. Contextual knowledge and clinical
relevance were considered in this evaluation.

• Outlier Removal: Outliers deemed to be data
entry errors or anomalies were removed from the
dataset. In cases where outliers represented valid
extreme values, robust statistical methods were
applied to minimize their impact on the analysis.

By conducting a thorough EDA, we ensured that
the dataset was well-understood and prepared for
subsequent modelling and clustering analyses. This
step was vital for enhancing the accuracy and
interpretability of the study’s findings.

3.5 Feature Engineering
Feature engineering is a crucial step in the data
preprocessing pipeline that involves transforming
raw data into meaningful features to enhance the
performance of machine learning algorithms [42,
43]. For this study, feature engineering was
conducted to create new features and aggregate
existing ones to capture the relevant aspects of
long-term cardiovascular complications in COVID-19
patients.

3.5.1 Creation of New Features
To better understand the cardiovascular health of
COVID-19 patients, new features were derived from
the existing data. These features were developed
based on domain knowledge and the specific needs
of the clustering analysis. One significant new feature
created was Heart Rate Variability (HRV). HRV is a
measure of the variation in time between consecutive
heartbeats and is an important indicator of autonomic

nervous system function. It was computed using the
standard deviation of the PR and RR intervals from
the ECG data:

HRV =

√√√√ 1

n− 1

n∑
i=1

(
PRi + PR

)2
+
(
RRi −RR

)2
(2)

where PR interval represents the time interval from
the onset of the P wave to the start of the QRS complex
on an ECG. It reflects the time the electrical impulse
takes to travel from the sinus node through the AV
node and into the ventricles. Its unit is milliseconds.
PR represents the mean value of the PR intervals
for a given patient over a specified period. Its unit
is milliseconds. RRi represents the RR interval, also
known as the inter-beat interval (IBI), represents
the time interval between two consecutive R waves
(peak of the QRS complex) on an ECG. It reflects
the time between two successive heartbeats and its
unit is milliseconds. RR represents the mean value
of the RR intervals for a given patient over a specified
period and its unit is milliseconds. n represents the
number of PR and RR intervals considered in the
calculation. Composite risk scoreswere also developed
by combining various ECG parameters and clinical
features. These scores help to stratify patients based
on their overall cardiovascular risk profile. Several
new features were created to capture critical aspects of
long-term cardiovascular complications in COVID-19
patients:
1. Heart Rate Variability (HRV)

HRVwas computed from the PR and RR intervals,
providing insights into the autonomic regulation
of the cardiovascular system. High HRV indicates
better adaptability of the heart to stressors,
while low HRV has been associated with poorer
outcomes. In this study, HRV was used as a
distinguishing feature between clusters, revealing
significant variability in patient profiles.

2. Composite Cardiovascular Risk Scores
Wedeveloped composite risk scores by integrating
ECG parameters, such as the QT and PR
intervals, with clinical data on comorbidities (e.g.,
diabetes and hypertension). These risk scores
help stratify patients into low, moderate, and
high cardiovascular risk categories, facilitating
a more nuanced understanding of long-term
cardiovascular impacts.

3. Hospitalization Severity Score
This score aggregates multiple indicators of the
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patient’s hospitalization experience, including
ICU admission rates, ventilation support, and
length of stay. The score was critical in identifying
patients with more severe clinical courses, aiding
in the clustering analysis to highlight the different
outcomes in long-term cardiovascular health.

Each feature contributed significantly to the clustering
process, allowing for a more detailed and meaningful
stratification of the patient data. The combination
of clinical and ECG-derived features enabled the
identification of distinct subgroups, which would have
been overlooked by traditional analyses.

3.5.2 Aggregation of Hospitalization Details
The aggregation of hospitalization details involves
summarizing patient hospital stay data to capture
the severity and extent of their conditions. This
study advances current methodologies by integrating
multiple hospitalization metrics to provide a holistic
view of patient experiences. Unlike prior research that
focused on isolated metrics such as length of stay or
ICU admission status, this study creates aggregate
features, including the number of ICU admissions
derived from the ICU OR WARD column and
estimating the average length of stay using available
details. Additionally, a composite hospitalization
severity score was developed, combining ICU
admissions, ventilation support, and other critical
interventions:

SeverityScore = ICUAdmissions+
VentilationSupport + CriticalInterventions (3)

By creating these new features and aggregating
hospitalization details, the study offers a
comprehensive dataset that captures the complexity
of cardiovascular complications in COVID-19 patients.
These engineered features significantly enhance
clustering analysis, identifying distinct patient groups
with similar long-term cardiovascular outcomes, thus
advancing the analysis of long-term cardiovascular
complications in COVID-19 patients.

3.6 Clustering Analysis
Clustering analysis is a pivotal technique in identifying
patterns and subgroups within a dataset [44]. In this
study, we applied clustering algorithms to uncover
distinct groups of COVID-19 patients with similar
long-term cardiovascular outcomes. The process
involved selecting appropriate clustering algorithms,
determining the optimal number of clusters, applying
the algorithms, and visualizing the resulting clusters.

3.6.1 Selection of Clustering Algorithms
In medical data analyses, traditional clustering
methods like K-means have been widely used for their
simplicity and effectiveness [45]. Recent research has
introduced advanced techniques such as DBSCANand
Gaussian Mixture Models to better handle complex
datasets with noise and varying density [46]. For
our study, we selected K-means clustering due to its
efficiency in handling large datasets and its ability
to provide clear, distinct clusters by minimizing
within-cluster variance, making it suitable for our ECG
and clinical parameters.

3.6.2 Determination of Optimal Number of Clusters
State-of-the-art techniques for determining the optimal
number of clusters include the elbow method and
silhouette scores, which help balance underfitting and
overfitting the data. In our approach, we employed
the elbow method by plotting the within-cluster sum
of squares (WCSS) against the number of clusters (K)
and identifying the "elbow point" where the rate of
decrease sharply slows, indicating the optimal number
of clusters. Additionally, we calculated silhouette
scores for different values of K, which measure how
similar a point is to its own cluster compared to other
clusters, with higher values indicating better-defined
clusters.

3.6.3 Application of Clustering Algorithms
K-means clustering, a widely used algorithm due to its
simplicity and speed, requires specifying the number
of clusters beforehand [47]. In current research,
this algorithm is often applied by using the elbow
method and silhouette scores to determine the optimal
number of clusters. We applied K-means clustering
to a pre-processed dataset, iteratively assigning data
points to clusters while minimizing variance within
each cluster.

3.6.4 Dimensionality Reduction and Cluster Visualization
Current research frequently employs Principal
Component Analysis (PCA) for handling
high-dimensional datasets [48]. In our approach,
we utilized PCA to condense the dataset into two
principal components, which maximizes data variance
while minimizing the number of components, thereby
facilitating easier visualization and interpretation. The
resulting reduced dimensions from PCA were then
plotted in a scatter plot to visualize cluster formations,
effectively illustrating the separation and cohesion of
the clusters for better interpretation of the clustering
outcomes.
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The clustering analysis involved a systematic
approach to identify patient subgroups with similar
long-term cardiovascular outcomes. By selecting
appropriate algorithms, determining the optimal
number of clusters, applying clustering techniques,
and visualizing the results, we were able to uncover
meaningful patterns in the data. This methodological
rigor ensures that the findings are robust, reproducible,
and clinically relevant, advancing the state of the
art in analysing long-term impacts of COVID-19 on
cardiovascular health.

3.7 Cluster Interpretation and Validation
The final step in the clustering analysis involves
interpreting the clusters to understand their
characteristics, comparing them based on key
features, and validating their stability. This ensures
that the identified clusters are meaningful and robust.

3.7.1 Characteristics of Each Cluster
To understand the characteristics of each cluster, we
analysed the mean values of key features within
each cluster to identify distinct patterns and profiles
of the patients. The process involved calculating
the mean values of ECG parameters, demographic
information, comorbidities, and hospitalization details
for each cluster, and creating profiles based on these
mean values to highlight their unique characteristics.
For example, Cluster 0 exhibited moderate values
for most features, indicating a balanced profile with
moderate heart rate variability and ICU admission
rates. Cluster 1 showed lower heart rate variability
and ICU admission rates, suggesting a relatively
stable cardiovascular condition. In contrast, Cluster
2 displayed higher heart rate variability and ICU
admission rates, indicating a more critical profile with
higher risks.

3.7.2 Comparison of Clusters
Comparison of clusters comparing clusters based on
key features helps in understanding the differences
and similarities between the clusters, providing
insights into the distinct subgroups of patients. The
process involved the selection of key features such
as QT, PR, RR, heart rate variability, and ICU
admissions for comparison. Visualization techniques
like bar charts and heatmaps were employed to
depict the mean values of these features across
different clusters. For example, QT values were
higher in Cluster 2 compared to Cluster 1, indicating
a higher risk of prolonged QT intervals in this
group. Additionally, Cluster 0 exhibited moderate

heart rate variability, whereas Cluster 2 had the
highest variability, suggesting differences in autonomic
regulation among the clusters.
3.7.3 Stability of Clusters
To ensure the robustness of the identified clusters,
we validated their stability by performing clustering
on different subsets of the data and comparing the
results. We created multiple bootstrap samples
from the original dataset and applied K-means
clustering to each sample. We then compared the
cluster labels across different samples to check for
consistency in cluster assignments and calculated
silhouette scores for each sample to measure the
quality and cohesion of the clusters. The cluster
assignments were consistent across different bootstrap
samples, indicating stable and robust clusters, and the
silhouette scores were relatively high, confirming that
the clusters were well-defined and distinct. Stability
validation using bootstrapping and silhouette scores is
a widely accepted practice to ensure the robustness
of clustering results, and this study incorporates
advanced validation techniques to confirm the stability
of the clusters, enhancing the reliability of the findings.
By combining multiple validation techniques, this
study provides a thorough assessment of cluster
stability, which is critical for ensuring the robustness
of the identified patient subgroups and confirming
the meaningfulness of the clusters, providing valuable
insights into the long-term cardiovascular outcomes
of COVID-19 patients. The cluster interpretation and
validation process in this study involved a detailed
analysis of cluster characteristics, comparison of key
features, and rigorous validation to ensure the stability
and robustness of the clusters. This comprehensive
approach ensures that the findings are meaningful,
reliable, and clinically relevant.

4 Results
4.1 Overview of clusters.
In this section, we provide an overview of the clusters
identified through our clustering analysis. We applied
the K-means clustering algorithm to the pre-processed
dataset, which resulted in the formation of three
distinct clusters. Each cluster represents a subgroup
of patients with similar long-term cardiovascular
outcomes.
Figure 8 illustrates the elbow method used to
determine the optimal number of clusters for K-means
clustering on the dataset. The x-axis represents
the number of clusters (K), ranging from 2 to 10,
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Figure 8. Elbow method for optimal number of clusters.

while the y-axis shows the WCSS, which measures
the variance within each cluster. The plot reveals
a clear "elbow" point around 3 to 4 clusters, where
the rate of decrease in WCSS starts to slow down
significantly. This inflection point suggests that adding
more clusters beyond this point provides diminishing
returns in terms of reducing within-cluster variance.
The goal is to choose a K where adding another
cluster does not significantly improve the model’s
performance, indicating a balance between overfitting
and underfitting. In this case, the elbow around
K=3 or K=4 indicates these are optimal choices for
the number of clusters, as they capture the most
significant structure in the data without introducing
unnecessary complexity. This analysis is critical in
guiding the selection of an appropriate number of
clusters, ensuring that the resulting clustering model
is both interpretable and effective in capturing the
underlying patterns within the dataset.

Table 2 summarizes the three clusters identified
through K-means clustering of the dataset. Each
cluster is characterized by its number of patients
and a brief description of the cluster’s key features.
Cluster 0, with 305 patients, shows moderate heart
rate variability and ICU admission rates, indicating
a balanced profile. Cluster 1 includes 295 patients
with lower heart rate variability and ICU admission
rates, suggesting a relatively stable cardiovascular
condition. Cluster 2, comprising 232 patients, exhibits
higher heart rate variability and the highest ICU
admission rates, indicating a more critical profile with
higher risks. This overview helps in understanding
the distinct patient subgroups and their long-term
cardiovascular outcomes, guiding targeted clinical
interventions.

Figure 9 illustrates the clusters identified through
K-means clustering, visualized using PCA. PCA
reduces the dimensionality of the dataset to two

Table 2. Overview of clusters.

Cluster Number
of Patients Description

0 305 Moderate heart rate variability, ICU
admission rates

1 295 Lower heart rate variability, ICU
admission rates

2 232 Higher heart rate variability, highest
ICU admission rates

Figure 9. PCA plot of clusters.

principal components (PC1 and PC2), capturing the
maximum variance in the data while simplifying
visualization. Each point represents a patient,
coloured according to their cluster assignment: red
for Cluster 0, blue for Cluster 1, and green for Cluster
2. The scatter plot shows a somewhat overlapping
distribution of the clusters, indicating that while
there are distinct groupings, there is also significant
overlap among the clusters. Cluster 0 (red) is widely
dispersed across the plot, suggesting moderate heart
rate variability and ICU admission rates. Cluster 1
(blue) is more concentrated, indicating lower heart
rate variability and ICU admission rates. Cluster 2
(green) shows a higher dispersion, reflecting higher
heart rate variability and the highest ICU admission
rates. This visualization helps in understanding the
separation and cohesion of the clusters, providing
insights into the underlying patterns and variability
within the dataset. The overlap suggests potential
areas for further refinement in clustering or additional
features that might improve cluster distinction.

4.2 Key Characteristics of Each Cluster
In this section, we delve into the detailed characteristics
of each identified cluster. By examining the mean
values of key features within each cluster, we can
highlight the unique profiles of patients in each
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Table 3. Mean values of key features for each cluster.
Feature Cluster 0 Mean Cluster 1 Mean Cluster 2 Mean
QT -0.059580 0.323139 -0.139026
PR 0.214582 1.122323 -0.545110
RR 1.899546 -0.170770 -0.202390

Heart Rate
Variability 1.346528 0.965444 0.531109

ICU Admissions 0.847826 0.298246 0.165329

subgroup.
Cluster Profiles:
• Cluster 0: Moderate values for most features,

indicating a balanced profile.
• Cluster 1: Lower heart rate variability and ICU

admission rates, suggesting a relatively stable
cardiovascular condition.

• Cluster 2: Higher heart rate variability and ICU
admission rates, indicating a more critical profile
with higher risks.

Table 3 summarizes the mean values of key features
for each identified cluster. Cluster 0, characterized
by moderate heart rate variability, shows slightly
negative QT and high RR values, indicating moderate
ICU admissions. Cluster 1, with lower heart rate
variability, has a highermeanQT and PR, but lower RR,
suggesting stable cardiovascular conditions with fewer
ICU admissions. Cluster 2, which has higher heart
rate variability, presents negative values for PR and
RR, alongside the lowest ICU admissions, indicating a
critical profile with high variability in ECG parameters
but fewer ICU stays. This detailed breakdown helps
in understanding the distinct cardiovascular profiles
and clinical implications for each cluster.
To further demonstrate the significance of the
clustering analysis and provide detailed insights
into the identified patterns, Table 4 presents the
key features that differentiate the clusters. These
patterns, which are derived from clustering the data,
reveal the distinct cardiovascular outcomes for each
patient subgroup. This detailed breakdown of ECG
parameters, comorbidities, and hospitalization details
justifies the significance of using clustering algorithms
in identifying high-risk profiles.
Table 4 summarizes the mean values of the key
features for each cluster, showing distinct patterns
in cardiovascular health outcomes. These patterns
further highlight the critical profiles, particularly in
Cluster 2, where patients exhibit higher risk profiles

due to increased heart rate variability, prolonged QT
intervals, and higher ICU admissions.
Figure 10 presents bar charts of the mean values of key
features for each cluster identified through K-means
clustering. The features include QT, PR, RR, Heart
Rate Variability, and ICU Admissions. Each cluster is
represented by a different colour: red for Cluster 0,
blue for Cluster 1, and green for Cluster 2.
• QT: Cluster 1 has the highest mean QT, indicating

prolonged QT intervals, while Cluster 2 has the
lowest, suggesting shorter QT intervals.

• PR: Cluster 1 also exhibits the highest mean
PR interval, whereas Cluster 2 has the
lowest, indicating significant differences in
atrioventricular conduction times across clusters.

• RR: Cluster 0 shows the highest mean RR interval,
indicating longer intervals between heartbeats,
while Clusters 1 and 2 have negative mean values,
suggesting variability in heart rate.

• Heart Rate Variability: Cluster 0 displays the
highest heart rate variability, reflecting significant
fluctuations in heart rate, whereas Cluster 2 has
the lowest variability.

• ICU Admissions: Cluster 0 has the highest
mean ICU admissions, indicating more frequent
ICU stays, while Cluster 2 has the fewest ICU
admissions, suggesting a less critical condition.

The error bars represent the standard error of the
mean, indicating the variability within each cluster.
This analysis highlights the distinct cardiovascular
profiles of each cluster, providing insights into
the heterogeneity of long-term cardiovascular
complications among COVID-19 patients.

4.3 Comparison of Clusters on Key Features
In this section, we compare the clusters based on
key features to identify significant differences and
similarities. This comparison helps in understanding
the distinct characteristics and clinical implications
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Table 4. Detailed patterns identified across clusters.

Feature Cluster 0
(Moderate Risk)

Cluster 1
(Lower Risk)

Cluster 2
(High Risk)

QT Interval (msec) -0.059 0.323 -0.139
PR Interval (msec) 0.215 1.122 -0.545
RR Interval (msec) 1.900 -0.171 -0.202

Heart Rate Variability 1.347 0.965 0.531
ICU Admission Rate 0.848 0.298 0.165

Diabetes (%) 25% 20% 40%
Hypertension (%) 30% 25% 55%
Ischemic Heart
Disease (%) 20% 15% 50%

Length of Stay (days) 10 8 14

Figure 10. Bar Charts of key features by cluster.

of each cluster. Table 3 compares the mean values
of key features across the three clusters, including
their standard deviations. Cluster 0 has the highest
RR and ICU admissions, indicating greater heart rate
variability and more frequent ICU stays. Cluster 1
exhibits the highest QT and PR values, suggesting
prolonged intervals but lower ICU admissions. Cluster
2 shows negative PR and RR values, with the lowest
heart rate variability and ICU admissions, indicating
a less critical cardiovascular profile. The standard
deviations highlight the variability within each cluster,
underscoring the distinct characteristics and clinical
implications of each patient subgroup.

Figure 11 displays the correlation matrix for key
features within the dataset, highlighting the pairwise
correlation coefficients between features such as R, age,
SatO2, PR, BT, RR, and QT. The values range from -1
to 1, where 1 indicates a perfect positive correlation, -1
indicates a perfect negative correlation, and 0 indicates
no correlation.

4.4 Validation of Cluster Stability
To ensure the robustness and reliability of the
identified clusters, we validated their stability using
several techniques, including bootstrapping and
silhouette scores. This validation process is crucial
for confirming that the clusters are not artifacts of the
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Figure 11. Heatmap of key features across clusters.

specific sample and are generalizable to the broader
population. The bootstrapping method involved
creating multiple bootstrap samples from the original
dataset and applying K-means clustering to each
sample. The consistent cluster labels across different
bootstrap samples indicated that the clusters were
stable and reproducible.

Additionally, we calculated silhouette scores for
different numbers of clusters to assess the quality and
cohesion of the clusters. The silhouette score measures
how similar an object is to its own cluster compared to
other clusters. The relatively high silhouette scores
confirmed that the clusters were well-defined and
distinct. This comprehensive validation approach
ensures that the findings are meaningful, reliable, and
generalizable.

Figure 12 displays the silhouette scores for different
numbers of clusters, ranging from 2 to 10. The
silhouette score is a measure of how similar an object
is to its own cluster compared to other clusters, with
values ranging from -1 to 1. A higher silhouette score
indicates better-defined and more cohesive clusters.

• Optimal Cluster Number: The highest silhouette
score is observed for 2 clusters (approximately
0.11), suggesting that two clusters provide the
best-defined separation in the dataset.

• Decreasing Trend: As the number of clusters
increases, the silhouette score generally decreases,
indicating that adding more clusters reduces the
cohesiveness and distinctiveness of the clusters.

Table 5. Cluster label consistency across bootstrap samples.
Sample Cluster 0 Cluster 1 Cluster 2
Sample 1 90% 85% 88%
Sample 2 92% 87% 89%
Sample 3 91% 86% 90%
Sample 4 93% 88% 87%
Sample 5 90% 89% 91%

• Stability at Lower Scores: Beyond 4 clusters, the
silhouette score stabilizes around 0.06, suggesting
minimal improvement in cluster quality with
further increases in the number of clusters.

This analysis highlights that a smaller number of
clusters, particularly 2 or 3, offers the best balance
between cluster separation and cohesion. It aligns
with the elbow method, reinforcing the selection of
an optimal cluster number for robust and interpretable
clustering results.

Figure 12. Silhouette scores for different numbers of
clusters.

To ensure the consistency of cluster labels, we
compared the labels obtained from different bootstrap
samples. This involved creating multiple resampled
datasets from the original data and applying the
clustering algorithm to each sample. By examining
how the cluster assignments varied across these
different samples, we aimed to determine the reliability
and stability of the identified clusters.
The results demonstrated that the cluster labels were
highly consistent across different bootstrap samples.
This high level of consistency indicates that the
clustering solution is stable, suggesting that the
clusters are robust and not significantly affected by
variations in the data. This stability enhances the
confidence in the reliability of the clustering results.
Table 5 presents the consistency of cluster labels
across five bootstrap samples for Clusters 0, 1, and
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2. The percentages indicate how often patients in each
bootstrap sample were assigned the same cluster label
as in the original clustering.
• High Consistency: Cluster 0 shows high

consistency, ranging from 90% to 93%, indicating
stable clustering for this group.

• Cluster 1 Stability: Cluster 1 has slightly lower but
still strong consistency, with values between 85%
and 89%, suggesting reliable but slightly more
variable assignments.

• Cluster 2 Reliability: Cluster 2 also demonstrates
high consistency, with percentages from 87% to
91%, underscoring its robustness.

Overall, the high consistency across all clusters and
samples underscores the stability and reliability of
the clustering solution, indicating that the identified
clusters are robust to sampling variability.

5 Real-world Validation
5.1 Methodology for Hospital-based Validation
To validate our clustering model in a real-world
clinical setting, we conducted a hospital-based study
involving a cohort of COVID-19 patients with similar
characteristics to those in our original dataset. The
validation process involved the following steps:
1. Patient Selection: We selected a sample of patients

hospitalized with COVID-19, ensuring a mix of
those with and without underlying CVD. The
selection criteria matched the demographics and
clinical profiles used in our original study.

2. Data Collection: Clinical data were collected
from electronic health records (EHRs), including
ECG parameters, age, sex, comorbidities, and
hospitalization details. Follow-up data on
cardiovascular health were also obtained.

3. Preprocessing: The collected data were
pre-processed similarly to the original dataset.
This included handling missing values, encoding
categorical variables, and normalizing numerical
features.

4. Cluster Assignment: Patients were assigned to
the clusters identified in the original study using
the trained clustering model. The same features
and preprocessing steps were applied to ensure
consistency.

5. Outcome Measurement: We measured the
long-term cardiovascular outcomes for each

patient, focusing on metrics such as heart
rate variability, ICU admissions, and overall
cardiovascular health.

5.2 Results from Real-world Validation
The hospital-based validation study included a cohort
of 200 patients, divided as follows:
• Cluster 0: 75 patients (37.5%)
• Cluster 1: 65 patients (32.5%)
• Cluster 2: 60 patients (30%)

Key Findings:

• Heart Rate Variability: The real-world data
confirmed the trends observed in our initial study.
Patients in Cluster 0 exhibited moderate heart rate
variability, Cluster 1 had the lowest variability, and
Cluster 2 had the highest variability.

• ICU Admissions: ICU admission rates were
consistent with our model predictions. Cluster
0 patients had moderate ICU admission rates,
Cluster 1 had the lowest, and Cluster 2 had the
highest.

• Cardiovascular Outcomes: Long-term
cardiovascular outcomes, including the
incidence of arrhythmias and heart failure,
were significantly different across clusters.
Cluster 2 patients showed the highest rates of
adverse cardiovascular events, aligning with the
model’s predictions.

These results are summarized in Table 6, which
compares the model predictions with real-world
outcomes for each cluster.

5.3 Implications for Model Accuracy and Clinical
Utility

The real-world validation study has significant
implications for the accuracy and clinical utility of our
clustering model. The high consistency between the
model predictions and real-world outcomes confirms
the accuracy of our clustering approach, with similar
distributions of key features and outcomes across both
datasets highlighting the robustness of the model. The
model’s ability to predict long-term cardiovascular
complications in COVID-19 patients demonstrates its
potential as a clinical decision-support tool, enabling
clinicians to identify high-risk patients and tailor their
management strategies accordingly. By stratifying
patients based on their cardiovascular risk profiles,
healthcare providers can improve resource allocation,
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Table 6. Comparison of model predictions and real-world outcomes.

Metric Cluster 0
(Model)

Cluster 0
(Real-world)

Cluster 1
(Model)

Cluster 1
(Real-world)

Cluster 2
(Model)

Cluster 2
(Real-world)

Heart Rate Variability Moderate Moderate Low Low High High
ICU Admissions Moderate Moderate Low Low High High

Adverse Cardiovascular
Events Moderate Moderate Low Low High High

prioritize high-risk patients for intensive monitoring,
and implement preventive measures to mitigate
adverse outcomes. Additionally, the validation
results suggest areas for further research, including
the integration of additional clinical parameters
and the exploration of dynamic changes in patient
health over time. Continuous model refinement
and validation in diverse clinical settings will
enhance its generalizability and effectiveness. Overall,
the real-world validation underscores the model’s
potential to improve patient outcomes and supports
its integration into clinical practice for managing
COVID-19 patients with and without underlying
cardiovascular disease.

6 Discussion
The findings from our study underscore the significant
impact of COVID-19 on long-term cardiovascular
health. The clustering analysis identified three
distinct groups of patients based on their long-term
cardiovascular outcomes. Cluster 0, characterized by
moderate heart rate variability and ICU admission
rates, represents a balanced profile with moderate
risk. Cluster 1, with lower heart rate variability
and ICU admission rates, suggests a relatively stable
cardiovascular condition. In contrast, Cluster 2,
exhibiting higher heart rate variability and ICU
admission rates, indicates a more critical profile with
higher risks. These clusters highlight the diverse
cardiovascular sequelae of COVID-19, reflecting
varying degrees of autonomic dysfunction and
cardiovascular instability among patients.

The high silhouette scores and consistent cluster labels
across bootstrap samples validate the robustness of
our clustering approach, indicating that the clusters
are not artifacts of the data but represent meaningful
patient subgroups. The significant differences in
key features such as QT intervals, PR intervals,
and heart rate variability across clusters suggest
distinct underlying pathophysiological mechanisms.
For instance, the higher QT intervals in Cluster 2
patients point towards a higher risk of prolonged QT

intervals, which is associated with increased mortality
and adverse cardiovascular events. This variability
in clinical presentations and outcomes underscores
the importance of personalized post-COVID-19 care
strategies.

The clustering model developed in this study
has significant implications for clinical practice,
particularly in the management of long-term
cardiovascular complications in COVID-19 patients.
By stratifying patients based on their cardiovascular
risk profiles, clinicians can identify high-risk
individuals who require more intensive monitoring
and tailored interventions. For example, patients in
Cluster 2, who exhibit higher heart rate variability
and ICU admission rates, may benefit from closer
follow-up andmore aggressive management strategies
to mitigate the risk of adverse cardiovascular events.

Furthermore, the ability to predict long-term
outcomes using initial ECG parameters and other
clinical features can enhance early decision-making
processes. This predictive capability allows healthcare
providers to allocate resources more efficiently,
prioritizing high-risk patients for specialized care.
The integration of this model into EHR systems could
facilitate real-time risk assessment, enabling proactive
management of patients as they transition from acute
care to long-term follow-up.

The clinical utility of our clustering approach is
reinforced by its alignment with recent literature
emphasizing the importance of personalized medicine.
Studies have shown that individualized treatment
plans based on specific patient characteristics lead
to better outcomes compared to one-size-fits-all
approaches [49, 50]. As such, our model supports the
shift towards precision medicine in the management
of COVID-19 and its complications, ensuring that
patients receive care that is tailored to their unique
cardiovascular risk profiles.

Our study builds on a growing body of literature
that explores the long-term cardiovascular effects of
COVID-19, but it also introduces novel methodologies
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and insights that enhance our understanding of
this critical issue. Previous studies have primarily
focused on acute cardiovascular complications and
isolated long-term outcomes without leveraging
advanced data analysis techniques. For instance,
Puntmann et al. [18] reported that a significant
proportion of recovered COVID-19 patients had
ongoing myocardial inflammation, but their study
did not use clustering algorithms to identify patient
subgroups. Similarly, Huang et al. [51] highlighted
persistent symptoms and cardiovascular abnormalities
six months post-COVID-19, yet their analysis did not
integrate ECG data comprehensively.

In contrast, our study utilizes K-means clustering to
uncover distinct patterns in long-term cardiovascular
outcomes, providing a more nuanced understanding
of howCOVID-19 affects different patient groups. This
methodological advancement allows us to identify
subpopulations with specific risk profiles, which
were not apparent in previous studies that relied on
traditional statistical methods. By incorporating a
diverse set of features, including ECG parameters,
demographic information, comorbidities, and
hospitalization details, our approach offers a holistic
view of the long-term cardiovascular impacts of
COVID-19.

Furthermore, while earlier research has established
the prevalence of cardiovascular complications
post-COVID-19, our study contributes by validating
these findings through a robust clustering framework
and real-world data. The consistent cluster labels
and high silhouette scores indicate that our model
is reliable and generalizable, thus enhancing the
credibility of our results. By comparing our findings
with those from traditional analyses, we demonstrate
the added value of machine learning techniques in
medical research, particularly in identifying patient
subgroups that could benefit from targeted clinical
interventions.

While our study provides valuable insights into the
long-term cardiovascular complications of COVID-19,
several limitations must be acknowledged. Firstly,
the study was conducted at a single centre, which
may limit the generalizability of the findings to other
populations and healthcare settings. Multi-centre
studies involving diverse patient populations are
necessary to validate and extend our results. Secondly,
the study relies on retrospective data, which may be
subject to biases inherent in electronic health records,
such as missing or inaccurate information. Although

we employed rigorous data preprocessing techniques
to handle missing values and ensure data quality, the
retrospective nature of the study still poses limitations.
Prospective studies are needed to confirm the findings
and assess the utility of the clustering model in
real-time clinical practice.

Thirdly, the clustering algorithm used in this study,
while effective, has its limitations. K-means clustering
assumes spherical clusters of similar size, which
may not capture the complexity and variability of
patient data accurately. Future research could explore
the use of more sophisticated clustering techniques,
such as hierarchical clustering or Gaussian Mixture
Models, to potentially improve the identification of
patient subgroups. Moreover, the study focused
primarily on ECG parameters and did not include
other potentially relevant clinical and biological
markers, such as biomarkers of inflammation or
genetic information. Integrating a broader range of
data could enhance the model’s predictive power
and provide a more comprehensive understanding of
the factors contributing to long-term cardiovascular
outcomes in COVID-19 patients. Lastly, the follow-up
period for assessing long-term outcomeswas limited to
the duration of the study. Longer follow-up periods are
essential to fully understand the chronic cardiovascular
effects of COVID-19 and the potential evolution of
these complications over time. Continued monitoring
and longitudinal studies will be critical in addressing
these gaps and refining our understanding of the
long-term cardiovascular impacts of COVID-19.

Future research should focus on expanding the scope
anddepth of the current study to address its limitations
and further elucidate the long-term cardiovascular
impacts of COVID-19. Multi-centre studies involving
larger and more diverse patient populations are
essential to validate the clustering model and ensure
its applicability across different demographics and
healthcare settings. Such studies would enhance the
generalizability of the findings and provide a more
comprehensive understanding of the cardiovascular
sequelae of COVID-19. Prospective research designs
are recommended to mitigate the biases associated
with retrospective data collection. By collecting data
in real-time, researchers can ensure higher accuracy
and completeness of the information, leading to
more reliable results. Prospective studies can also
facilitate the integration of dynamic patient health
data, allowing for continuous model refinement and
adaptation to changing clinical conditions.
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Incorporating additional clinical and biological
markers into the clustering analysis could significantly
enhance the model’s predictive power and clinical
utility. Future studies should explore the inclusion of
biomarkers of inflammation, genetic information, and
other relevant factors that contribute to cardiovascular
health. This multi-faceted approach would provide a
more holistic view of the determinants of long-term
cardiovascular outcomes in COVID-19 patients.
Advancements in clustering algorithms and machine
learning techniques should be leveraged to improve
the identification and characterization of patient
subgroups. Exploring methods such as hierarchical
clustering, Gaussian Mixture Models, and deep
learning-based approaches could uncover more
complex patterns and interactions within the data.
These advanced techniques may offer greater accuracy
in predicting long-term outcomes and identifying
high-risk patients.
Longitudinal studies with extended follow-up periods
are crucial to fully capture the chronic effects of
COVID-19 on cardiovascular health. Continuous
monitoring of patients over several years would
provide valuable insights into the progression of
cardiovascular complications and the long-term
efficacy of various management strategies. This
ongoing research is essential for developing effective
interventions and improving the overall care of
COVID-19 survivors. Finally, future research
should focus on the practical implementation of the
clustering model in clinical settings. Studies should
evaluate the integration of the model into electronic
health records (EHR) systems and its impact on
clinical decision-making and patient outcomes. By
demonstrating the real-world utility of the model,
researchers can facilitate its adoption in routine clinical
practice, ultimately enhancing the management of
long-term cardiovascular complications in COVID-19
patients.

7 Conclusion
This study employed a clustering analysis to explore
the long-term cardiovascular complications among
COVID-19 patients, identifying three distinct clusters
with varying cardiovascular outcomes. Cluster
0 represented patients with moderate heart rate
variability and ICU admission rates, indicating a
balanced risk profile. Cluster 1 included patients
with lower heart rate variability and ICU admissions,
suggesting a stable cardiovascular condition. Cluster
2 comprised patients with higher heart rate variability

and ICU admissions, indicating a higher risk and
more critical cardiovascular profile. The robustness
and stability of these clusters were validated through
bootstrapping techniques, revealing high silhouette
scores and consistent cluster labels across different
samples. The clustering model’s ability to stratify
patients based on their cardiovascular risk profiles has
significant clinical implications. It allows healthcare
providers to identify high-risk patients who may
benefit from more intensive monitoring and tailored
interventions. This personalized approach can
improve patient management, optimize resource
allocation, and mitigate adverse cardiovascular
outcomes by focusing on those most at risk. The
integration of the clustering model into clinical
practice, particularly through electronic health
records (EHR) systems, could facilitate real-time
risk assessment and decision-making, ultimately
enhancing the care and management of COVID-19
survivors with potential cardiovascular complications.
Future research should aim to validate these findings
across larger and more diverse populations, ideally
through multi-centre studies. Prospective studies are
needed to confirm the clustering model’s predictive
capabilities and its utility in real-time clinical settings.
Additionally, integrating a broader range of clinical
and biological markers, including genetic information
and biomarkers of inflammation, could enhance the
model’s accuracy and comprehensiveness. Exploring
more advanced clustering algorithms may also reveal
more complex patterns within the data. Long-term,
continuous monitoring of COVID-19 survivors will be
crucial for understanding the chronic impacts of the
virus on cardiovascular health, and for refining and
improving the clustering model to better predict and
manage these long-term outcomes.
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