Staffordshire University logo
STORE - Staffordshire Online Repository

Practical Application of Machine Learning based Online Intrusion Detection to Internet of Things Networks

Nixon, Christopher, SEDKY, Mohamed and HASSAN, Mohamed (2019) Practical Application of Machine Learning based Online Intrusion Detection to Internet of Things Networks. Proceedings of the 2019 IEEE Global Conference on Internet of Things (GCIoT). (In Press)

[img] Text
Practical Application of Machine Learning Based Online Intrusion Detection to Internet of Things Networks (4).pdf - AUTHOR'S ACCEPTED Version (default)
Restricted to Repository staff only until 10 October 2021.
Available under License Creative Commons Attribution 4.0 International (CC BY 4.0) .

Download (240kB) | Request a copy

Abstract or description

Internet of Things (IoT) devices participate in an open and distributed perception layer, with vulnerability to cyber attacks becoming a key concern for data privacy and service availability. The perception layer provides a unique challenge for intrusion detection where resources are constrained and networks are distributed. An additional challenge is that IoT networks are a
continuous non-stationary data stream that, due to their variable nature, are likely to experience concept drift. This research aimed to review the practical applications of online machine learning methods for IoT network intrusion detection, to answer the question if a resource efficient architecture can be provided? An online learning architecture is introduced, with related IDS approaches reviewed and evaluated. Online learning provides a potential memory and time efficient architecture that can adapt to concept drift and perform anomaly detection, providing solutions for the resource constrained and distributed IoT perception layer.
Future research should focus on addressing class imbalance in
the data streams to ensure that minority attack classes are not

Item Type: Article
Faculty: School of Computing and Digital Technologies > Computing
Depositing User: Library STORE team
Date Deposited: 17 Dec 2019 16:17
Last Modified: 28 Mar 2020 15:58

Actions (login required)

View Item View Item

DisabledGo Staffordshire University is a recognised   Investor in People. Sustain Staffs
Legal | Freedom of Information | Site Map | Job Vacancies
Staffordshire University, College Road, Stoke-on-Trent, Staffordshire ST4 2DE t: +44 (0)1782 294000