Staffordshire University logo
STORE - Staffordshire Online Repository

Adaptive functions in an agent-based model of an economic system

WHITE, David (2022) Adaptive functions in an agent-based model of an economic system. Adaptive Behavior. ISSN 1059-7123

[img] Text
Resilience Paper V3.docx - AUTHOR'S ACCEPTED Version (default)
Available under License All Rights Reserved.

Download (566kB)

Abstract or description

Agent-based models, with a history reaching back to the 1940s, have been cited as a useful technique for planning economic development and simulating the effect of economic crashes. These models offer an insightful alternative to the traditional techniques of mathematical modelling. Understanding how different designs of agent-based models change simulation outcomes will be useful for modellers of economic and other simulation scenarios. The work presented here examines how a computer simulation of an agent-based model responds to disruptive events, in the context of an economic model. Agents within the model interact by producing, selling, and buying goods. A series of experiments compare system stability in two scenarios: one where a top-down rule is applied to the pricing of goods, and another where decision making is at the individual agent level, a bottom-up approach. These two approaches are termed system-adaptive and self-adaptive. Results draw the conclusion that a self-adaptive function can provide greater stability, but this depends on whether the measured variable is a primary or secondary variable to the adaptive function. Considerations are presented for future work which could consider the impact adaptive functions have on secondary variable measurements.

Item Type: Article
Additional Information: This is an Accepted Manuscript of an article published by SAGE Publications in Adaptive Behavior on 27 April 2022, available at: https://journals.sagepub.com/doi/10.1177/10597123221095644
Uncontrolled Keywords: Agent-based model, stability, simulation
Faculty: School of Digital, Technologies and Arts > Games Design, Production and Programming
Depositing User: David WHITE
Date Deposited: 06 Jun 2022 10:40
Last Modified: 10 Aug 2022 08:03
URI: https://eprints.staffs.ac.uk/id/eprint/7350

Actions (login required)

View Item View Item

DisabledGo Staffordshire University is a recognised   Investor in People. Sustain Staffs
Legal | Freedom of Information | Site Map | Job Vacancies
Staffordshire University, College Road, Stoke-on-Trent, Staffordshire ST4 2DE t: +44 (0)1782 294000